Highway to hydrogenase: A new way to obtain the hydrogenase cofactor azadithiolate

Jan 24, 2011

To obtain hydrogen as an energy-rich and environmentally "clean" fuel by an inexpensive, simple method without using expensive metal catalysts preoccupies scientists around the world. Hydrogenases, enzymes employed by organisms to yield hydrogen under anaerobic conditions, are being studied intensively as alternative systems. A very popular research strategy is to build enzyme models that can then be modified to bring them closer to the ultimate goal of functioning even in the presence of some oxygen and not being impeded, or “poisoned”, by the hydrogen gas produced.

Azadithiolate (S−–CH2–NH–CH2–S−) is one of the seven cofactors that make up an important part of such a hydrogenase catalyst. Thomas Rauchfuss and his team at the University of Illinois at Urbana-Champaign developed a new approach to obtain this cofactor, which is described in the Short Communication published in the European Journal of Inorganic Chemistry.

This new approach employs organotitanium compounds, which are known to enable the synthesis of unusual ligands containing sulfur. A dithiolatotitanocene complex was first synthesized, demonstrating that titanocene stabilizes azadithiolate ligands. The next step was to transfer the azadithiolate ligand from the titanocene to a dinuclear iron center, which was successfully carried out with efficiency and good yield.

The importance of this new route to obtain diiron azadithiolato complexes is that it proceeds with high yield and does not require complicated reagents. In addition to describing the first synthesis and structural characterization of an azadithiolato complex not based on the diiron core, the scientists have succeeded in transferring the azadithiolate ligand to the diiron center, which enables further studies of this important cofactor.

Explore further: New insights on carbonic acid in water

More information: Thomas Rauchfuss, A New Route to Azadithiolato Complexes, European Journal of Inorganic Chemistry, dx.doi.org/10.1002/ejic.201001208

add to favorites email to friend print save as pdf

Related Stories

Synthetic catalyst mimics nature's 'hydrogen economy'

May 18, 2009

By creating a model of the active site found in a naturally occurring enzyme, chemists at the University of Illinois have described a catalyst that acts like nature's most pervasive hydrogen processor.

Better chemistry through living models

Jun 06, 2007

Scientists at Pacific Northwest National Laboratory will receive $1.98 million from the U.S. Department of Energy over the next three years to emulate nature’s use of enzymes to convert chemicals to energy, PNNL announced ...

Recommended for you

New insights on carbonic acid in water

12 hours ago

Though it garners few public headlines, carbonic acid, the hydrated form of carbon dioxide, is critical to both the health of the atmosphere and the human body. However, because it exists for only a fraction ...

NASA is catalyst for hydrogen technology

22 hours ago

NASA answered a call to help the world's largest aerospace company develop a better way to generate electricity for its aircraft. Instead, it wound up helping a very small technology company to thrive.

Triplet threat from the sun

Oct 21, 2014

The most obvious effects of too much sun exposure are cosmetic, like wrinkled and rough skin. Some damage, however, goes deeper—ultraviolet light can damage DNA and cause proteins in the body to break down ...

User comments : 0