Synthetic catalyst mimics nature's 'hydrogen economy'

May 18, 2009

By creating a model of the active site found in a naturally occurring enzyme, chemists at the University of Illinois have described a catalyst that acts like nature's most pervasive hydrogen processor.

The researchers describe their work in a paper accepted for publication in the , and posted on the journal's Web site.

Scientists have long been puzzled by nature's ability to use cheap and plentiful building blocks - iron, nickel and sulfur - to achieve the catalytic performance seen in rare and expensive metals. In particular, two enzymes - iron-iron hydrogenase and nickel-iron hydrogenase - function as hydrogen processors, much like platinum.

"Nature relies on a very elaborate architecture to support its own 'hydrogen economy,' " said Thomas B. Rauchfuss, a professor of chemistry and corresponding author of the paper. "We cracked that design by generating mock-ups of the catalytic site to include the substrate hydrogen atom."

The researchers' model of the nickel-iron complex is the first to include a bridging ligand, an essential component of the .

"By better understanding the mechanism in the nickel-iron hydrogenase active site, we are learning how to develop new kinds of synthetic catalysts that may be useful in other applications," said graduate student Bryan E. Barton, lead author of the paper.

"The study of hydrogenases offers plenty of potential glamour - such as the economy, green energy and bio-fuel cells - but the lasting breakthroughs result from manipulable mechanistic models like ours," said graduate student and co-author Matthew Whaley. "By building a model that contains a hydride ligand, we have proven that the behavior of these natural catalysts can be understood and optimized."

Source: University of Illinois at Urbana-Champaign (news : web)

Explore further: Better chemistry through living models

Related Stories

Better chemistry through living models

June 6, 2007

Scientists at Pacific Northwest National Laboratory will receive $1.98 million from the U.S. Department of Energy over the next three years to emulate nature’s use of enzymes to convert chemicals to energy, PNNL announced ...

Research advances understanding of how hydrogen fuel is made

October 5, 2005

Oxygen may be necessary for life, but it sure gets in the way of making hydrogen fuel cheaply and abundantly from a family of enzymes present in many microorganisms. Blocking oxygen’s path to an enzyme’s production machinery ...

'Wiring up' enzymes for producing hydrogen in fuel cells

November 19, 2007

Researchers in Colorado are reporting the first successful “wiring up” of hydrogenase enzymes. Those much-heralded proteins are envisioned as stars in a future hydrogen economy where they may serve as catalysts for hydrogen ...

Following Nature's Lead, Scientists Seek Better Catalysts

January 24, 2005

Iron-sulfur nanosystem isolated from bacterium is more reactive than catalysts in use Those seeking to design more efficient catalysts for the production of hydrogen and the control of air pollutants might do well to take ...

Scientists discover new way to make water

October 31, 2007

In a familiar high-school chemistry demonstration, an instructor first uses electricity to split liquid water into its constituent gases, hydrogen and oxygen. Then, by combining the two gases and igniting them with a spark, ...

Recommended for you

Converting water into hydrogen more efficiently

March 24, 2017

Scientists have long been puzzled why it is easier to produce hydrogen from water in an acidic environment than in an alkaline environment. Marc Koper comes with an explanation: the reason is the electric field at the surface ...

Creating materials in a novel way by 3-D printing bacteria

March 24, 2017

(Phys.org)—A team of researchers at Delft University of Technology has developed a means for 3-D printing a gel containing bacteria onto a base to create materials in a novel way. In their paper published in the journal ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.