Gulf of Mexico methane gas concentrations have returned to near-normal levels

Jan 06, 2011
The NOAA Ship Pisces is in the background. Credit: Texas A&M University and NOAA

Calling the results "extremely surprising," researchers from the University of California, Santa Barbara and Texas A&M University report that methane gas concentrations in the Gulf of Mexico have returned to near normal levels only months after a massive release occurred following the Deepwater Horizon oil rig explosion.

Findings from the research study, led by oceanographers John Kessler of Texas A&M and David Valentine of UCSB, were published today in Science Xpress, in advance of their publication in the journal Science. The findings show that Mother Nature quickly saw to the removal of more than 200,000 metric tons of dissolved through the action of bacteria blooms that completely consumed the immense gas plumes the team had identified in mid-June. At that time, the team reported finding in amounts 100,000 times above normal levels. But, about 120 days after the initial spill, they could find only normal concentrations of methane and clear evidence of complete methane respiration.

"What we observed in June was a horizon of deep water laden with methane and other hydrocarbon gases," Valentine said. "When we returned in September and October and tracked these waters, we found the gases were gone. In their place were residual methane-eating bacteria, and a 1 million ton deficit in dissolved oxygen that we attribute to respiration of methane by these bacteria."

Kessler added: "Based on our measurements from earlier in the summer and previous other measurements of methane respiration rates around the world, it appeared that (Deepwater Horizon) methane would be present in the Gulf for years to come. Instead, the methane respiration rates increased to levels higher than have ever been recorded, ultimately consuming it and prohibiting its release to the atmosphere."

While the scientists' research documents the changing conditions of the Gulf waters, it also sheds some light on how the planet functions naturally.

"This tragedy enabled an impossible experiment," Valentine said, "one that allowed us to track the fate of a massive methane release in the deep ocean, as has occurred naturally throughout Earth's history."

This shows the deployment of the CTD Rosette system for collecting water samples. Credit: Texas A&M University and NOAA

Kessler noted: "We were glad to have the opportunity to lend our expertise to study this oil spill. But also we tried to make a little good come from this disaster and use it to learn something about how the planet functions naturally. The seafloor stores large quantities of methane, a potent greenhouse gas, which has been suspected to be released naturally, modulating global climate. What the Deepwater Horizon incident has taught us is that releases of methane with similar characteristics will not have the capacity to influence climate."

The Deepwater Horizon offshore drilling platform exploded on April 20, 2010, about 40 miles off the Louisiana coast. The blast killed 11 workers and injured 17 others. Oil was gushing from the site at the rate of 62,000 barrels per day, eventually spilling an estimated 170 million gallons of oil into the Gulf. The leak was capped on July 15, and the well was permanently sealed on Sept. 19.

The research team collected thousands of water samples at 207 locations covering an area of about 36,000 square miles. The researchers based their conclusions on measurements of dissolved methane concentrations, dissolved oxygen concentrations, methane oxidation rates, and microbial community structure.

Explore further: Big snowstorms will still occur in Northern Hemisphere following global warming, study finds

Related Stories

Scientist proposes method to quantify Gulf oil spill

May 24, 2010

While the world has reacted with shock and anger to the massive amounts of oil leaking into the Gulf of Mexico as a result of the Deepwater Horizon platform blowout, a UC Santa Barbara scientist has proposed that methane ...

Deep plumes of oil could cause dead zones in the Gulf

Aug 19, 2010

A new simulation of oil and methane leaked into the Gulf of Mexico suggests that deep hypoxic zones or "dead zones" could form near the source of the pollution. The research investigates five scenarios of oil and methane ...

Just How Significant Is Methane On Titan?

Sep 12, 2005

Titan's second most abundant constituent, methane, is critical to the maintenance of an earth-like nitrogen atmosphere on this satellite. Without methane, Titan's nitrogen would condense, leaving behind a puny amount in ...

Recommended for you

Karina's remnants drawn into Hurricane Marie's spin

2 hours ago

Karina finally became a remnant low pressure area after roaming around in the Eastern Pacific for two weeks. Satellite data on August 27 showed that the now shapeless former hurricane was being drawn into ...

NASA image: Veld Fires in South Africa

2 hours ago

South Africa is entering what is described by the Volunteer Wildfire Services of South Africa as "Cape Fire Season." The Eastern Cape provincial government warned residents in certain parts of the province ...

Sentinel-1 poised to monitor motion

2 hours ago

Although it was only launched a few months ago and is still being commissioned, the new Sentinel-1A radar satellite has already shown that it can be used to generate 3D models of Earth's surface and will ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

3432682
3 / 5 (2) Jan 06, 2011
Good news on the methane. Now what is the effect of oxygen deficit, and how long does it last?
jonnyboy
3 / 5 (4) Jan 06, 2011
I am always amazed when these people are surprised at the biosphere's ability to bounce back.