MRI contrast agents change stem cell proliferation

Nov 01, 2010

When researchers tested three different labeling agents on three different stem cell populations to determine what effect the labeling agents had on stem cell phenotype, biological behavior and migration abilities, they found changes in stem cell proliferation depending on the type of contrast agent used.

The team of researchers from Belgium and Spain tested USPIO (ultra small superparamagnetic ) contrast agents Resovist, Endorem and Sinerem on mouse (mESC), rat multipotent adult progenitor cells (rMAPC) and mouse mensenchymal stem cells (mMSC). Their study is published in the current issue of (19:8), now freely available on-line at http://www.ingentaconnect.com/content/cog/ct/.

The researchers found the labeling efficiency with each of the (U)SPIOs varied significantly when different stem cell populations were compared.

"This means that labeling methods will likely need to be optimized for every cell type," said Dr. Crabbe. "Over time we saw a dilution of (U)SPIOs and a decrease of iron in the cells."

Non-invasive imaging plays an important post-transplantation role in , but questions regarding whether the used to track transplanted stem cells in vivo via have an impact on the cells had largely gone unanswered until this study.

On the issue of whether (U)SPIO labeling has a biological affects on cells, the researchers discovered "no significant alterations" in cell phenotypes and that the label "does not significantly alter stem cell differentiation."

"Sinerem decreased proliferation of mMSC while both Sinerem and Endorem affected the proliferation rate of rMAPC, although prolonged culture, until seven days, resulted in restoration of the proliferation rate," noted Dr. Crabbe. "We also found that higher concentrations of Sinerem ® and Endorem ® were needed for cell labeling to achieve similar MRI detectability."

The researchers concluded that it will be necessary to evaluate the efficiency of cell labeling for every new contrast agent combination aimed at being followed in vivo by MRI. Also, the effect on biological behavior of cells should be examined. They noted that their results were limited to examining the effects of labeling on proliferation, not differentiation.

"Although labeling of stem cells with MRI is promising, there are some limitations," concluded Dr. Crabbe. "More optimal particles are needed that can be taken up without the need of potentially toxic agents. Also, there is the problem of particle dilution over time as cells divide. When grafted cells continue to proliferate, loss of signal occurs."

According to Dr. Julio Voltarelli, professor of clinical medicine and clinical immunology at the University of Sao Pãulo, Brazil and section editor for Cell Transplantation there has been a knowledge gap regarding the survival and distribution of stem cell populations used for in vivo therapy.

"Many studies have tried to close this gap by using radioactive or nonradioactive labeling of the cells in order to follow their fate in the organism," said Dr. Voltarelli. "However, this paper demonstrates that such labeling may alter stem cell behavior, such as proliferative potential, and give biased information when compared to nonlabeled cells."

Explore further: Top Japan lab dismisses ground-breaking stem cell study

Provided by Cell Transplantation Center of Excellence for Aging and Brain Repair

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Researchers find a better way to track stem cells

Apr 05, 2010

A study published in the current issue of Cell Transplantation (19:1) has found that using the FDA-approved contrast agent Indocyanine Green (ICG) to label human embryonic stem cell-derived cardiomyocytes (hESC-CMs) substa ...

Are there too many stem cell journals?

Aug 18, 2010

Are there too many stem cell research journals? This question has been posed by Drs. Paul Sanberg and Cesar Borlongan of the Department of Neurosurgery and Brain Repair at the University of South Florida. Their article appears ...

Identification of a novel neural stem cell type

Jan 14, 2008

As published in the upcoming issue of G&D, sesearchers from the Sloan-Kettering Institute, led by Dr. Lorenz Studer, have discovered a novel type of neural stem cell, which has a broader differentiation potential than previously ...

Recommended for you

Top Japan lab dismisses ground-breaking stem cell study

Dec 26, 2014

Japan's top research institute on Friday hammered the final nail in the coffin of what was once billed as a ground-breaking stem cell study, dismissing it as flawed and saying the work could have been fabricated.

Research sheds light on what causes cells to divide

Dec 24, 2014

When a rapidly-growing cell divides into two smaller cells, what triggers the split? Is it the size the growing cell eventually reaches? Or is the real trigger the time period over which the cell keeps growing ...

Locking mechanism found for 'scissors' that cut DNA

Dec 24, 2014

Researchers at Johns Hopkins have discovered what keeps an enzyme from becoming overzealous in its clipping of DNA. Since controlled clipping is required for the production of specialized immune system proteins, ...

Scrapie could breach the species barrier

Dec 24, 2014

INRA scientists have shown for the first time that the pathogens responsible for scrapie in small ruminants (prions) have the potential to convert the human prion protein from a healthy state to a pathological ...

Extracting bioactive compounds from marine microalgae

Dec 24, 2014

Microalgae can produce high value health compounds like omega-3s , traditionally sourced from fish. With declining fish stocks, an alternative source is imperative. Published in the Pertanika Journal of Tr ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.