Gene find could lead to healthier food, better biofuel production

Nov 22, 2010 by Brian Wallheimer

(PhysOrg.com) -- Purdue University scientists have found the last undiscovered gene responsible for the production of the amino acid phenylalanine, a discovery that could lead to processes to control the amino acid to boost plants' nutritional values and produce better biofuel feedstocks.

Natalia Dudareva, a distinguished professor of horticulture, and Hiroshi Maeda, a postdoctoral researcher in Dudareva's laboratory, determined that the gene is one of 10 responsible for phenylalanine production in plants. Understanding how the amino acid is produced could provide a strategy to increase or reduce that production.

Phenylalanine is important for plant and for the production of flower scent, anti-oxidants and lignin, a principal plant cell wall component that helps plants stand upright and acts as a barrier in the production of cellulosic ethanol. It is one of the few essential that humans and animals cannot synthesize, so it must come from plants.

"In where we want to lower lignin content, we may be able to block these pathways," Maeda said. "In cases where you want to increase the amount of phenylalanine, we could do that as well."

Decreasing phenylalanine could lead to a reduction in lignin, which would improve digestibility of for ethanol production. Increasing phenylalanine could boost the nutritional value of some foods.

Dudareva and Maeda used a co-expression analysis to find the prephenate aminotransferase gene. They monitored the expression activity of nine genes in the research plant Arabidopsis that were known to be involved in phenylalanine production and looked for other genes that became active at the same time.

"This gene had almost identical gene expression patterns as the known phenylalanine-related genes," Maeda said.

The comparable gene in petunias also was identified. Dudareva and Maeda confirmed that its expression patterns matched other involved in the formation of phenylalanine and volatile scent compounds in the flower.

To test the find, Dudareva and Maeda used the E. coli bacteria. They overexpressed the protein encoded by newly discovered gene and detected the expected enzyme activity. They also decreased the gene's expression in petunia flowers and witnessed a reduction in phenylalanine production.

"We provided both biochemical and genetic evidence that the gene is indeed involved in phenylalanine biosynthesis," Dudareva said. "It completes the pathway."

Dudareva said she would use the discovery to increase the scent of flowers in order to study the interaction of insects with flowers.

Explore further: The microbes make the sake brewery

More information: Prephenate Aminotransferase Directs Plant Phenylalanine Biosynthesis Via Arogenate, Hiroshi Maeda, Heejin Yoo and Natalia Dudareva, Nature Chemical Biology, Published online: 21 November 2010, doi:10.1038/nchembio.485

Related Stories

Plant Gene Mapping May Lead to Better Biofuel Production

Apr 13, 2009

(PhysOrg.com) -- By creating a 'family tree' of genes expressed in one form of woody plant and a less woody, herbaceous species, scientists at the U.S. Department of Energy’s Brookhaven National Laboratory ...

Researchers find genes that 'tune' flower fragrances

Feb 09, 2010

(PhysOrg.com) -- Shakespeare famously wrote, "That which we call a rose by any other name would smell as sweet." With all due respect to the Bard, University of Florida researchers may have to disagree: no matter what you ...

Recommended for you

The microbes make the sake brewery

Jul 24, 2014

A sake brewery has its own microbial terroir, meaning the microbial populations found on surfaces in the facility resemble those found in the product, creating the final flavor according to research published ahead of print ...

User comments : 0