Cell membranes behave like cornstarch and water

Nov 03, 2010

(PhysOrg.com) -- Surprising discovery by physicists at the University of Oregon overturns a long-held belief, and raises fresh new scientific questions about the biology that regulates lipid and protein mobility.

Mix two parts cornstarch and one part water. Swirl your fingers in it slowly and the mixture is a smoothly flowing liquid. Punch it quickly with your fist and you meet a rubbery solid -- so solid you can jump up and down on a vat of it.

It turns out that cell membranes — or, more precisely the two-molecule-thick lipid sheets that form the structural basis of all cellular membranes — behave the same way, say University of Oregon scientists.

For decades, researchers have been aware that biological membranes are fluid, and that this fluidity is crucial to allowing the motions and interactions of proteins and other cell surface molecules. The new studies, however, reveal that this state is not the simple Newtonian fluidity of familiar liquids like water, but rather it is viscoelastic. At rest the mixture is very fluid, but when quickly perturbed, it bounces back like rubber.

This video is not supported by your browser at this time.

The discovery is detailed Oct. 25 in the Early Edition of the Proceedings of the National Academy of Sciences, and it strikes down the notion that these biologically important membranes are Newtonian fluids that flow regardless of the stress they encounter.

"This changes our whole understanding of what lipid membranes are," said Raghuveer Parthasarathy, a professor of physics and member of the UO's Materials Science Institute and Institute of Molecular Biology. "We may need to rethink our understanding of how all sorts of the mechanical processes that occur in cell membranes work, like how proteins are pulled from one place to another, how cells respond to stretching and other forces, and how membrane-embedded proteins that serve as channels for chemical signals are able to open and close.

"A lot of these mechanical tasks go awry in various diseases for reasons that remain mysterious," he said. "Perhaps a deeper understanding of the mechanical environment that membranes provide will illuminate why biology functions, or fails to function, in the way it does."

In the project, freestanding membranes of lipids — fatty molecules that form the basis of all cell membranes — were built with lipid-anchored nanoparticles as tracers that could be observed under high-powered microscopes. Close analysis of the trajectories of these particles allowed researchers to deduce the fluid and elastic properties of the membranes under changing conditions.

Leading the experiments were Christopher W. Harland, who earned a doctorate in physics from the UO last summer and is now a postdoctoral researcher at the University of Chicago, and Miranda J. Bradley, then a visiting undergraduate student from Portland Community College and now at Portland State University. Bradley studied in Parthasarathy's lab as part of the UO's Undergraduate Catalytic Outreach & Research Experiences (UCORE) program.

The importance of membrane fluidity has been recognized for decades, but membranes’ strange character as a viscoelastic material has gone unnoticed, said Parthasarathy, who is among UO scientists involved in the Oregon Nanoscience and Microtechnologies Institute (ONAMI). "In retrospect, we shouldn’t be surprised. Nature uses viscoelasticity in lots of its other liquids, from mucus to tears. Now we’ve found that it harnesses viscoelasticity in membranes as well.”

Explore further: Scientists sweep cells apart for use in medical research

Related Stories

Nanomaterials to Mimic Cells

Aug 23, 2005

Mimicking a real living cell by combining artificial membranes and nanomaterials in one construction is the aim of a new research grant at UC Davis. The Nanoscale Integrated Research Team grant, funded by the National Science ...

Instruction Manual for Creating a Molecular Nose

Feb 12, 2007

An artificial nose could be a real benefit at times: this kind of biosensor could sniff out poisons, explosives or drugs, for instance. Researchers at the Max Planck Institute for Polymer Research and the Max ...

Recommended for you

'Global positioning' for molecules

Dec 19, 2014

In everyday life, the global positioning system (GPS) can be employed to reliably determine the momentary location of one en route to the desired destination. Scientists from the Institute of Physical and ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Slotin
1 / 5 (2) Nov 04, 2010
..but when quickly perturbed, it bounces back like rubber...
Neurophysiologists are aware of this behavior already, because the spreading of soliton signals along neuron membrane requires elasticity. They're assigning the character of liquid crystal to it, which can retain its properties in quite narrow range of temperatures. It explains the narcotic properties of many fat-soluble chemicals and why cold blooded vertebrates are requiring sun-bath for being able to see sharply and to move fast during prey hunting. My feeling is, this study is reinventing a wheel.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.