'Reaper' protein strikes at mitochondria to kill cells

Oct 20, 2010
The results could be plainly seen in the how the eyes developed. Here is a normal eye (left) beside one that's almost completely destroyed by apoptosis (right).

Our cells live ever on the verge of suicide, requiring the close attention of a team of molecules to prevent the cells from pulling the trigger. This self-destructive tendency can be a very good thing, as when dangerous precancerous cells are permitted to kill themselves, but it can also go horribly wrong, destroying brain cells that store memories, for instance. Rockefeller University scientists are parsing this perilous arrangement in ever finer detail in hopes that understanding the basic mechanisms of programmed cell death, or apoptosis, will enable them eventually to manipulate the process to kill the cells we want to kill and protect the ones we don’t.

In experiments published last month in the Journal of Cell Biology, researchers led by postdoctoral associate Cristinel Sandu in Hermann Steller’s Strang Laboratory of Apoptosis and Cancer Biology drilled down on a protein aptly named Reaper, which was first described in a 1994 paper by Steller in Science. Under the right conditions, Reaper interferes with molecules called inhibitor of apoptosis proteins (IAPs), which prevent the cell from irrevocably initiating its autodestruct sequence. By inhibiting these inhibitors, Reaper essentially takes the brakes off the process of apoptosis, pronouncing a cell’s death sentence. Other molecules called caspases then carry that sentence out.

“Like the grim reaper, Reaper is an announcer of death, but not the executioner,” says Steller, who is also a Howard Hughes Medical Institute investigator. “It’s like the key that starts the engine.”

Reaper and the other Drosophila IAP antagonists Hid and Grim are known to trigger apoptosis in flies, and related proteins serve a similar function in humans and other mammals. But exactly how and where Reaper initiates apoptosis has not been well understood. Sandu and colleagues bred genetically modified strains of flies that expressed variations on the Reaper protein specifically in flies’ eyes. This allowed them to assess the contribution of individual protein motifs to Reaper’s apoptosis inducing powers, and what they found was that a particular helical domain was crucial for the formation of Reaper complexes, and could be modified to be even more powerful than the regular protein. The more deadly Reaper variants were obvious by the damage caused to the flies’ eyes.

In a series of biochemical experiments, the researchers also found that Reaper must travel to the mitochondria, the cell’s energy factories, to effectively deliver its death sentence, and that to get there, it must hitch a ride on the Hid protein, with which it interacts. By tagging Hid and Reaper fluorescently, Sandu could visualize Hid and Reaper acting in a complex and gathering at the membrane of the mitochondria. When Reaper was engineered to go directly to the mitochondrial membrane, it resulted in a molecule that is far superior at triggering cell death than regular Reaper. Further experiments suggested that in a complex with Hid, Reaper is protected from degradation as the began to die.

“So now we have Hid and Reaper working very closely together,” Sandu says. “And the localization to the mitochondria is crucial to the initiation of apoptosis.” Drugs that mimic a small part of the function of Reaper are already in clinical trials. The discovery of a way to make Reaper a much better killer, namely by targeting it directly to the mitochondria, provides new avenues to explore for improving cancer therapies. “Adding this element that takes Reaper directly to the mitochondria is not something people would have thought of before this,” Steller says.

Explore further: Mycologist promotes agarikon as a possibility to counter growing antibiotic resistance

More information: Journal of Cell Biology 190: 1039–1052 (September 20, 2010) Drosophila IAP antagonists form multimeric complexes to promote cell death Cristinel Sandu, et al.

Related Stories

New cell death pathway involved in sperm development

Sep 18, 2007

Heavy and bulky sperm would not be good swimmers. To trim down, sperm rely on cell death proteins called caspases, which facilitate the removal of unwanted cellular material and radically remodel these cells ...

Key step in the 'puncture' mechanism of cell death revealed

May 12, 2008

A team of medical researchers led by Dr Ruth Kluck at Melbourne’s Walter and Eliza Hall Institute (WEHI) has discovered a key step in the mechanism by which cells destroy themselves. In this process, called “apoptosis”, ...

Immune cells kill foes by disrupting mitochondria 2 ways

May 15, 2008

When killer T cells of the immune system encounter virus-infected or cancer cells, they unload a lethal mix of toxic proteins that trigger the target cells to self-destruct. A new study shows T cells can initiate cellular ...

Recommended for you

YEATS protein potential therapeutic target for cancer

Oct 23, 2014

Federal Express and UPS are no match for the human body when it comes to distribution. There exists in cancer biology an impressive packaging and delivery system that influences whether your body will develop cancer or not.

Precise and programmable biological circuits

Oct 23, 2014

A team led by ETH professor Yaakov Benenson has developed several new components for biological circuits. These components are key building blocks for constructing precisely functioning and programmable bio-computers.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Doschx
5 / 5 (2) Oct 20, 2010
sweet. now design an airborne virus that incubates for a week before attacking cells and implanting the rna blueprint for Reaper (in addition to whatever else is needed to self-replicate). Gwa ha ha haaaaaa.