Popping cells surprise living circuits creators

August 9, 2010

Under the microscope, the bacteria start dividing normally, two cells become four and then eight and so on. But then individual cells begin "popping," like circus balloons being struck by darts.

This phenomenon, which surprised the Duke University bioengineers who captured it on video, turns out to be an example of a more generalized occurrence that must be considered by scientists creating living, synthetic circuits out of bacteria. Even when given the same orders, no two cells will behave the same.

The researchers believe this accidental finding of a circuit they call "ePop" can help increase the efficiency and power of future synthetic biology circuits.

Synthetic circuits are created by genetically altering colonies of bacteria to produce a myriad of useful proteins, enzymes or chemicals in a coordinated way. The circuits can even be reprogrammed to deliver different types of drugs or to selectively kill . Scientists in this emerging field of synthetic biology have operated under the assumption that when identical snippets of engineered DNA - known as plasmids -- are inserted into cells, each cell will respond in the same way.

This video is not supported by your browser at this time.

"In the past, synthetic biologists have often assumed that the components of the circuit would act in a predictable fashion every time and that the cells carrying the circuit would just serve as a passive reactor," said Lingchong You, an assistant professor of biomedical engineering and member of Duke's Institute for Genome Sciences & Policy. "In essence, they have taken a circuit-centric view for the design and optimization process. This notion is helpful in making the design process more convenient."

But the cells in this study unexpectedly began popping when the colony reached a certain density of cells because of an unintended consequence of introducing plasmids.

Biochemistry graduate student Philippe Marguet said the research team looked at many factors to try to explain how the bacteria sensed the size of their colonies. "In the end, it turns out that the (number of copies of) plasmid increases with cell density. This is the critical link that enables the cells to sense their density and to commit suicide at sufficiently high densities."

"We ran computer models and experiments to show that this is indeed the case," Marguet said. "Our results underscore the importance of the amount of plasmids and the potential impact of hidden interactions on the behavior of engineered gene circuits."

The results of the team's experiments were published online Aug. 9 in the journal PLoS One.

Researchers can reprogram populations of genetically altered bacteria to direct their actions in much the same way that a computer program directs a computer. In this analogy, the plasmids are the software, the cell the computer. One of these plasmids tells cells to commit suicide if the number of cells in a population gets too high.

However, in the ePop circuit, which made use of the common Escherichia coli (E. coli) bacteria, the cell death, or popping, took place without the suicide gene. The researchers believe that when the plasmid is inserted into bacteria, it can be expressed at different levels in different cells. When over-expressed in a particular cell, it leads to the cell's demise. When enough of the cells are so affected, the population of in the colony decreases.

"Perhaps the confluence of the conditions for significant plasmid amplification was not seen in previous experiments," You said. "In this regard, ePop can be valuable as a probe of cell physiology to find out what environmental and genetic conditions lead to this amplification. As a probe, ePop has the advantage of being easily observable and highly sensitive and it has the ability to provide new information on complex interactions between the plasmid and the host cell."

The goal, You said, is to get to the point where scientists have a complete understanding of each component of a circuit, so that when a new plasmid is added, all of its effects can be observed.

Explore further: Stealth technology maintains fitness after sex

Related Stories

Stealth technology maintains fitness after sex

January 12, 2007

Pathogens can become superbugs without their even knowing it, research published today in Science shows. 'Stealth' plasmids - circular 'DNA parasites' of bacteria that can carry antibiotic-resistance genes - produce a protein ...

Efficient crowd control in bacterial colonies

October 30, 2007

Bacterial cells form colonies with complex organization (aka biofilms), particularly in response to hostile environmental conditions. Recent studies have shown that biofilm development occurs when bacterial cells seek out ...

DNA molecules in moss open door to new biotechnology

November 6, 2009

Plasmids, which are DNA molecules capable of independent replication in cells, have played an important role in gene technology. Researchers from Uppsala University in Sweden have now demonstrated that plasmid-based methods, ...

Recommended for you

Huddling rats behave as a 'super-organism'

September 3, 2015

Rodents huddle together when it is cold, they separate when it is warm, and at moderate temperatures they cycle between the warm center and the cold edges of the group. In a new study published in PLOS Computational Biology, ...

Fighting explosives pollution with plants

September 3, 2015

Biologists at the University of York have taken an important step in making it possible to clean millions of hectares of land contaminated by explosives.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.