Gold nanoparticles create visible-light catalysis in nanowires

June 15, 2010
The gold-coated silver chloride nanowires at the microscopic level.

(PhysOrg.com) -- A scientist at the Argonne National Laboratory has created visible-light catalysis, using silver chloride nanowires decorated with gold nanoparticles, that may decompose organic molecules in polluted water.

"Silver nanowires have been extensively studied and used for a variety of applications, including transparent conductive electrodes for and optoelectronic devices," said nanoscientist Yugang Sun of Argonne's Center for . "By chemically converting them into semiconducting silver chloride nanowires, followed by adding gold nanoparticles, we have created nanowires with a completely new set of properties that are significantly different from the original nanowires."

Traditional silver chloride photocatalytic properties are restricted to ultraviolet and blue light wavelengths, but with the addition of the gold nanoparticles, they become photocatalytic in visible light. The visible light excites the electrons in the gold nanoparticles and initiates reactions that culminate in charge separation on the silver chloride nanowires. Tests have already shown that gold-decorated nanowires can decompose organic molecules such as methylene blue.

"If you were to create a film of gold-decorated nanowires and allow polluted water to flow through it, the may be destroyed with visible from conventional fluorescent light bulbs or the sun," Sun said.

Sun started with traditional silver nanowires that were oxidized with iron chloride to create silver chloride nanowires. A sequential reaction with sodium tetrachloroaurate deposited the on the wires.

Sun said it is possible to use a similar mechanism to deposit other metals such as palladium and platinum onto the silver chloride nanowires and create new properties, such as the ability to catalyze the splitting of water into hydrogen with sunlight.

A paper on this research was published in the Journal of Physical Chemistry C.

Explore further: Low-Temperature Growth and Properties of ZnO Nanowires

More information: Journal paper: pubs.acs.org/doi/abs/10.1021/jp9115645

Related Stories

Low-Temperature Growth and Properties of ZnO Nanowires

June 1, 2004

Xuan Wang et al. from Peking University, China report in the last issue of Applied Physics Letters about ZnO nanowires grown through evaporation of zinc powders under a low temperature of 400 C. Being about 10 nm in the diameter ...

Through the Wire: A New Nanocatalyst Synthesis Technique

March 16, 2009

(PhysOrg.com) -- Materials containing bimetallic nanoparticles are attractive in vast technological fields because of their unique catalytic, electronic, and magnetic properties. One of the most promising of the bunch is ...

Danish nanowires have great potential

November 2, 2009

Danish nanophysicists have developed a new method for manufacturing the cornerstone of nanotechnology research - nanowires. The discovery has great potential for the development of nanoelectronics and highly efficient solar ...

Copper Nanowires Enable Bendable Displays, Solar Cells

June 1, 2010

(PhysOrg.com) -- A team of Duke University chemists has perfected a simple way to make tiny copper nanowires in quantity. The cheap conductors are small enough to be transparent, making them ideal for thin-film solar cells, ...

Recommended for you

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Meet the high-performance single-molecule diode

July 29, 2015

A team of researchers from Berkeley Lab and Columbia University has passed a major milestone in molecular electronics with the creation of the world's highest-performance single-molecule diode. Working at Berkeley Lab's Molecular ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.