Tendons shape bones during embryonic development

December 14, 2009

In all vertebrates, including humans, bones, muscles and tendons work together to give the skeleton its characteristic balance of stability and movement. Now, new research uncovers a previously unrecognized interaction between tendons, which connect muscles to bones, and the developing embryonic skeleton. This study, published by Cell Press in the December 15th issue of the journal Developmental Cell, demonstrates that tendons drive the development of specific bone features that are needed for a strong skeletal system.

"Our skeleton with its bones, joints, and attachments serves us so well in our daily lives that we hardly pay attention to this extraordinary system," says senior study author, Dr. Elazar Zelzer from the Weizmann Institute of Science in Rehovot, Israel. "Although previous research has uncovered mechanisms that contribute to the development and growth of each issue composing this complex and wonderfully adaptable organ system, specific interactions between bones, muscles and tendons that drive the ordered assembly of the musculoskeletal system are not fully understood."

Dr. Zelzer and colleagues were interested in uncovering how "bone ridges" form. Bone ridges are knobby, thickened areas of bone that can be found wherever tendons are attached. These reinforced sections of bone are important anchoring points for connecting bones to muscles, and strong attachment at these sites enables the skeleton to cope with mechanical stresses exerted by the muscles.

While studying mouse embryos, the researchers discovered that tendons control the formation their own bone ridges through a two-stage process. First, tendons initiate outgrowth of the bone ridge by secreting a protein (BMP4) that promotes bone formation. Then, during the second stage, helps to promote further bone growth and set the final size of the bone ridge.

Taken together, the results demonstrate that tendons are needed for ridge patterning. "These findings provide a new perspective on the regulation of skeletogenesis in the context of the musculoskeletal system and shed light on a specific mechanism that underlies the assembly of this system," concludes Dr. Zelzer.

Source: Cell Press (news : web)

Explore further: Exercise when young may reduce risk of fractures later in life

Related Stories

How embryo movement stimulates joint formation

May 18, 2009

A new study uncovers a molecular mechanism that explains why joints fail to develop in embryos with paralyzed limbs. The research, published by Cell Press in the May issue of the journal Developmental Cell, answers a longstanding ...

Recommended for you

Secrets of a heat-loving microbe unlocked

September 4, 2015

Scientists studying how a heat-loving microbe transfers its DNA from one generation to the next say it could further our understanding of an extraordinary superbug.

Plants also suffer from stress

September 4, 2015

High salt in soil dramatically stresses plant biology and reduces the growth and yield of crops. Now researchers have found specific proteins that allow plants to grow better under salt stress, and may help breed future generations ...

Ancient walnut forests linked to languages, trade routes

September 4, 2015

If Persian walnut trees could talk, they might tell of the numerous traders who moved along the Silk Roads' thousands of miles over thousands of years, carrying among their valuable merchandise the seeds that would turn into ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.