Related topics: genes · protein · mice · cells · stem cells

'Yank': A new term in biophysics

Biologists and biomedical engineers are proposing to define the term "yank" for changes in force over time, something that our muscles and nerves can feel and respond to.

Studying heart cells with nanovolcanoes

Researchers at EPFL and the University of Bern have developed a groundbreaking method for studying the electrical signals of cardiac muscle cells. The technology has numerous potential applications in basic and applied research—such ...

How invading fungus forces zombie ant's death grip

If it's thoughts of zombies that keep you awake at night, you shouldn't be worried about zombie humans; it's the carpenter ants (Camponotus castaneus) that should concern you most. When infected by a specialised fungus (Ophiocordyceps ...

Red wine's resveratrol could help Mars explorers stay strong

Mars is about 9 months from Earth with today's tech, NASA reckons. As the new space race hurtles forward, Harvard researchers are asking: how do we make sure the winners can still stand when they reach the finish line?

Sheaths drive powerful new artificial muscles

Over the last 15 years, researchers at The University of Texas at Dallas and their international colleagues have invented several types of strong, powerful artificial muscles using materials ranging from high-tech carbon ...

page 1 from 23


Muscle (from Latin musculus, diminutive of mus "mouse") is the contractile tissue of the body and is derived from the mesodermal layer of embryonic germ cells. Muscle cells contain contractile filaments that move past each other and change the size of the cell. They are classified as skeletal, cardiac, or smooth muscles. Their function is to produce force and cause motion. Muscles can cause either locomotion of the organism itself or movement of internal organs. Cardiac and smooth muscle contraction occurs without conscious thought and is necessary for survival. Examples are the contraction of the heart and peristalsis which pushes food through the digestive system. Voluntary contraction of the skeletal muscles is used to move the body and can be finely controlled. Examples are movements of the eye, or gross movements like the quadriceps muscle of the thigh. There are two broad types of voluntary muscle fibers: slow twitch and fast twitch. Slow twitch fibers contract for long periods of time but with little force while fast twitch fibers contract quickly and powerfully but fatigue very rapidly.

This text uses material from Wikipedia, licensed under CC BY-SA