Sparkly Spiders and Photonic Fish

December 9, 2009

( -- Scientists in Israel and the UK have uncovered the details of how certain fish and spiders create their iridescent scales and silvery skins.

Applying new techniques Levy-Lior and colleagues at the Weizmann Institute of Science and York University showed that similar readily available are made and arranged with great precision in the creatures’ coatings. Intriguingly, although the patterns of arrangement are quite different for the fish and spiders, both result in highly reflective systems of similar effectiveness, indicating that modern-day scientists still have much to learn from nature.

“It is astonishing how through evolution, fish and silver-colored spiders have independently succeeded in achieving light-reflecting structures with similar efficiencies, although differences in mechanism is apparent,” according to Lia Addadi, the leader of the Israeli group.

The creatures use photonic systems, periodic physical structures that control the interaction of light with matter, either by scattering it or reflecting it. Such phenomena are familiar to us in cosmetics, iridescent paints and inks, and reflective coatings on mirrors and lenses. Nature brings us photonic systems in opals, some , and . The Koi fish studied in this work is well known for its “extraordinary iridescent colors”, while the silvery spiders of the study usually lie in the province of experts.

Both fish and photonic camouflage systems are composed of layers of guanine crystals. Guanine is a common molecule in biological systems; it is most widely known as one of the components of DNA. These fish and spiders are able to make guanine crystals of very specific size and orientation to achieve the reflectivity they require. While this was known previously, there was no evidence of exactly how the systems were assembled and how they worked to reflect light. One major obstacle was the difficulty involved in studying skins and scales intact, without damaging their delicate structure. “A major breakthrough,” according to Addadi, “was in the use of a high pressure freezing and freeze-fracture techniques followed by observation with cryo-scanning electron microscopy. Nobody had used these techniques before in this system.”

Their observations showed that “in the fish, single crystalline [guanine] plates alternate with layers of cytoplasm layers. [Cytoplasm is the major component of living cells.] In contrast to fish, in the spider the thin layers are crystal doublets, held together by amorphous guanine layers. We have calculated the predicted reflectivity of these arrays and determined that both systems, although they show differences in crystals arrangement, finally reach similar efficiencies in light reflectivity.”

Prof. Peter Fratzl works in the Department of Biomaterials at the Max Planck Institute of Colloids and Interfaces and is not related to the research. According to him, “It is very surprising that fish and spiders, pertaining to completely different taxonomic groups, independently acquired through evolution the ability to generate mirror-like reflections on their skin by depositing guanine crystals. This suggests that the solution must be quite efficient and it is, therefore, extremely promising for the materials scientists to try and understand the structural principles of these photonic crystals working as (colored) mirrors.”

He notes that the structural details of the photonic systems used by fish and spiders are “quite different” and points out that “the spider, in particular, uses a physical trick to enhance the reflectivity by separating the guanine by layers of amorphous guanine…This new understanding will increase the pool of ideas which nourish the emerging research field of bio-inspired materials science where one attempts to transfer clever solutions which emerged in the course of evolution into concepts for new materials.”

More information: A. Levy-Lior, E. Shimoni, O. Schwartz, E. Gavish-Regev, D. Oron, G. Oxford, S. Weiner, L. Addadi, “Guanine Based Biogenic Photonic Crystal Arrays in and Spiders”, Advanced Functional Materials, 2009, DOI: 10.1002/adfm.200901437

Provided by Wiley (news : web)

Explore further: Spookfish uses mirrors for eyes

Related Stories

Spookfish uses mirrors for eyes

January 7, 2009

A remarkable new discovery shows the four-eyed spookfish to be the first vertebrate ever found to use mirrors, rather than lenses, to focus light in its eyes.

Fabricating 3D Photonic Crystals

January 21, 2009

( -- “In photonic crystals, the ability to control the structure of a material in full three dimensional space, allows you to control the way that light flows through it,” John Rogers tells “This ...

Recommended for you

The sound of music, according to physicists

July 30, 2015

Joshua Bodon is sick of hearing "Somewhere Over the Rainbow." More specifically, he's sick of hearing one 25-second clip of the song repeated more than 550 times.

Researchers build bacteria's photosynthetic engine

July 29, 2015

Nearly all life on Earth depends on photosynthesis, the conversion of light energy into chemical energy. Oxygen-producing plants and cyanobacteria perfected this process 2.7 billion years ago. But the first photosynthetic ...

Rogue wave theory to save ships

July 29, 2015

Physicists have found an explanation for rogue waves in the ocean and hope their theory will lead to devices to warn ships and save lives.

Scientists unlock secrets of stars through aluminium

July 29, 2015

Physicists at the University of York have revealed a new understanding of nucleosynthesis in stars, providing insight into the role massive stars play in the evolution of the Milky Way and the origins of the Solar System.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.