New clues emerge for understanding morphine addiction

December 9, 2009
Scientists are reporting new clues to understanding morphine addiction. Credit: US Drug Enforcement Administration

Scientists are adding additional brush strokes to the revolutionary new image now emerging for star-shaped cells called astrocytes in the brain and spinal cord. Their report, which suggests a key role for astrocytes in morphine's ability to relieve pain and cause addiction, appears online in ACS' Journal of Proteome Research.

In the study, Piotr Suder and colleagues point out that nearly everyone viewed astrocytes — the most abundant cells in the — as supporting actors in the drama of brain activity. Scientists thought astrocytes simply propped up neurons, that transmit signals, and kept them in proper position. Studies during the last several years, however, suggest that these cells are just as their Greek name suggests — stars.

The scientists added morphine to a group of astrocytes in cell culture for several days. They found that the morphine-exposed cells showed increased levels of nine proteins that appear to play a role in maintaining the normal function of nerve . "These proteins, after additional detailed study of their function, may serve as a potential marker of drug addiction, or may be the targets for potential therapy," the article notes.

More information: "The Proteomic Analysis of Primary Cortical Astrocyte Cell Culture after Morphine Administration", ,

Source: American Chemical Society (news : web)

Explore further: New findings disprove old truth about brain cells

Related Stories

New findings disprove old truth about brain cells

November 16, 2006

The most common cells in the brain changes their behavior when the tissue is damaged, but their appearance does not change nearly to the extent that researchers thought. The domains of individual astrocytes are well contained ...

Brain cells help neighboring nerves regenerate

May 27, 2008

Researchers have uncovered a completely unexpected way that the brain repairs nerve damage, wherein cells known as astrocytes deliver a protective protein to nearby neurons.

Recommended for you

Detecting HIV diagnostic antibodies with DNA nanomachines

October 7, 2015

New research may revolutionize the slow, cumbersome and expensive process of detecting the antibodies that can help with the diagnosis of infectious and auto-immune diseases such as rheumatoid arthritis and HIV. An international ...

Organic semiconductors get weird at the edge

October 6, 2015

As the push for tinier and faster electronics continues, a new finding by scientists at the University of British Columbia (UBC) and Monash University could help inform the design of the next generation of cheaper, more efficient ...

New polymer creates safer fuels

October 1, 2015

Before embarking on a transcontinental journey, jet airplanes fill up with tens of thousands of gallons of fuel. In the event of a crash, such large quantities of fuel increase the severity of an explosion upon impact. Researchers ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.