Scientists Use Self-Assembly to Make Molecule-Sized Particles With Patches of Charge

October 20, 2009
Confocal microscopy images of spotted polymerosomes. Scale bars: 2 µm

(PhysOrg.com) -- Physicists, chemists and engineers at the University of Pennsylvania have demonstrated a novel method for the controlled formation of patchy particles, using charged, self-assembling molecules that may one day serve as drug-delivery vehicles to combat disease and perhaps be used in small batteries that store and release charge.

Researchers demonstrated that the positive electrical charges of calcium ions — just like the calcium in teeth and bone — can form bridges between negatively charged polymers that would normally repel each other. The polymers, similar to the lipids that make the membranes surrounding living cells, have both a water-loving part linked to a water-repelling part. On the surfaces of these cell-sized polymer sacks, the calcium ions create calcium-rich islands or patches on top of negatively-charged polymer. ions also work, and the patches can be made to coalesce and cover half of the particle. This polarized structure is the basic arrangement needed to set up, for example, the two electrodes of a microscopic battery. They could also one day be functionalized into docking sites to enhance targeted delivery of drug-laden particles to cells.

While the concept seems simple, that opposite charges attract, the creation and control of patches on one small particle has been a challenge. Scientists like Dennis E. Discher, principal investigator of the study and a professor of chemical and biomolecular engineering at Penn, are designing materials at the because future technologies will increasingly rely on structures with distinct and controlled surfaces. Physicians, for example, will improve medical therapies by wrapping drugs within the bioengineered polymer sacks, or by creating tiny biomedical sensors. production and storage will also require structures with scales no longer measured by inches, but by micrometers and nanometers.

The collaboration involved faculty from Penn's School of Engineering and Applied Science, the School of Medicine and the School of Arts and Sciences, and demonstrated, more specifically, the selective binding of multivalent cationic ligands within a mixture of both polyanionic and non-ionic amphiphiles that all co-assemble into either patchy sacks called vesicles or molecular cylinders called worm-like micelles. Similar principles have been explored with lipids in the field of membrane biophysics because calcium is key to many cellular signaling processes. The trick is that the energy of attraction of opposite charges must be adjusted to find a balance with the large entropic price for localization into spots. If the attractions are too large, the ions precipitate, just like adding too much sugar to tea or coffee.

Using a little bit of acid or a little of base, the patchy polymer vesicles and cylinders can be made with tunable sizes, shapes and spacings. Assemblies with single large patches are called Janus assemblies, named after the double-faced Roman god, and the assemblies generally last for years because these are polymer-based structures.

"The key advance we present in this study is the restricted range of conditions that are required for self assembly in these solutions," Discher said. "We show that, in addition to polymers, negatively-charged cell lipids which are involved in all sorts of cell-signaling processes like cell motion and cancer mechanics, can also make domains or islands with ."

The work is representative of national research into soft matter, materials constructed from organic molecules like lipids, peptides and nucleic acids. A properly designed molecular system can produce a wide array of nanostructures and microstructures, emulating and extending what is found in nature.

More information: The study has been published as the cover article in the journal Nature Materials.

Source: University of Pennsylvania (news : web)

Explore further: New Self-Assemble Building Blocks for Nanotechnology

Related Stories

New Self-Assemble Building Blocks for Nanotechnology

August 19, 2004

University of Michigan researchers have discovered a way to self-assemble nanoparticles into wires, sheets, shells and other unusual structures using sticky patches that make the particles group themselves together in programmed ...

Getting DNA to self-assemble

August 25, 2005

University of Illinois researchers have developed new ways to get DNA to self-assemble into various kinds of structures.

Artificial Cells

November 10, 2005

Do cells always have to be developed from organic carbon-containing compounds? When resourceful scientists stretch their imaginations, they quickly find an answer to this question. This is demonstrated by the work of Achim ...

Recommended for you

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Could stronger, tougher paper replace metal?

July 24, 2015

Researchers at the University of Maryland recently discovered that paper made of cellulose fibers is tougher and stronger the smaller the fibers get. For a long time, engineers have sought a material that is both strong (resistant ...

Changing the color of light

July 23, 2015

Researchers at the University of Delaware have received a $1 million grant from the W.M. Keck Foundation to explore a new idea that could improve solar cells, medical imaging and even cancer treatments. Simply put, they want ...

Wafer-thin material heralds future of wearable technology

July 27, 2015

UOW's Institute for Superconducting and Electronic Materials (ISEM) has successfully pioneered a way to construct a flexible, foldable and lightweight energy storage device that provides the building blocks for next-generation ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.