Researchers reveal mechanism for neuron self-preservation

October 19, 2009
With glutamate stimulation (right), CaV1.2 channels (red) are internalized and degraded by cortical neurons under PIKfyve's direction. Credit: Tsuruta, F., et al. 2009. J. Cell Biol. doi:10.1083/jcb.200903028.

Tsuruta et al. find that a lipid kinase directs a voltage-gated calcium channel's degradation to save neurons from a lethal dose of overexcitement. The study appears in the October 19, 2009 issue of the Journal of Cell Biology .

An important player in cellular signaling, is also terribly toxic at high levels. Neurons have evolved ways to protect themselves against the calcium influxes that come during periods of intense electrical activity. One way to limit the calcium flood is to remove the gatekeepers, calcium channels, from the cell surface. How neurons direct this is clinically important in a range of disorders, including stroke, Parkinson's disease, and Alzheimer's disease.

In a proteomic screen for binding partners of the CaV1.2 channel, Tsuruta et al. extracted what seemed a strange companion at first: PIKfyve, the kinase that generates PI(3,5)P2 and promotes the of endosomes into lysosomes. Other groups had recently shown that mutations affecting PI(3,5)P2 production cause degeneration of excitable cells in both mice and humans, including mutants found in ALS and Charcot-Marie-Tooth disease.

The team hypothesized that PIKfyve might be directing CaV1.2 degradation. Using glutamate excitation to simulate excitotoxic stress, the authors showed that CaV1.2 is internalized, associates with PIKfyve, and is degraded in the lysosome. When Tsuruta et al. squelched levels of PIKfyve or PI(3,5)P2, excess channels stayed at the surface and left neurons vulnerable to apoptosis.

The findings clarify how this neuroprotective mechanism unfolds and suggest that existing calcium channel-blocking drugs might aid patients with neurodegenerative disorders stemming from a PI(3,5)P2 defect.

More information: Tsuruta, F., et al. 2009. J. Cell Biol. doi:10.1083/jcb.200903028

Source: Rockefeller University (news : web)

Explore further: Matrix fragments trigger fatal excitement

Related Stories

Matrix fragments trigger fatal excitement

December 29, 2008

Shredded extracellular matrix (ECM) is toxic to neurons. Chen et al. reveal a new mechanism for how ECM demolition causes brain damage. The study will appear in the December 29, 2008 issue of The Journal of Cell Biology.

New clues about mitochondrial 'growth spurts'

March 2, 2009

Mitochondria are restless, continually merging and splitting. But contrary to conventional wisdom, the size of these organelles depends on more than fusion and fission, as Berman et al. show. Mitochondrial growth and degradation ...

Recommended for you

New gene map reveals cancer's Achilles heel

November 25, 2015

Scientists have mapped out the genes that keep our cells alive, creating a long-awaited foothold for understanding how our genome works and which genes are crucial in disease like cancer.

Study suggests fish can experience 'emotional fever'

November 25, 2015

(—A small team of researchers from the U.K. and Spain has found via lab study that at least one type of fish is capable of experiencing 'emotional fever,' which suggests it may qualify as a sentient being. In their ...

How cells in the developing ear 'practice' hearing

November 25, 2015

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular ...

How cells 'climb' to build fruit fly tracheas

November 25, 2015

Fruit fly windpipes are much more like human blood vessels than the entryway to human lungs. To create that intricate network, fly embryonic cells must sprout "fingers" and crawl into place. Now researchers at The Johns Hopkins ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.