New protein identified in bacterial arsenal

March 3, 2009
New protein identified in bacterial arsenal
Top feeder. Ubiquitin ligase proteins (green), produced by Salmonella bacteria, are drawn to the surface of the host cells that they infect, near structures called microvilli (red) that help the cells absorb nutrients, among other things.

(PhysOrg.com) -- Nearly a billion years ago, bacteria evolved an insidious means of infecting their hosts — a syringe-like mechanism able to inject cells with stealthy hijacker molecules. These molecules, called virulence factors, play a sophisticated game of mimicry, imitating many of the cells’ normal activities but ultimately co-opting them to serve the bacteria’s needs. Now researchers at The Rockefeller University have identified a new class of these coup artists that appear to take over a key process that regulates a wide range of cellular duties, from cell-cycle progression to cell death, even communication between cells.

Scientists in C. Erec Stebbins’s Laboratory of Structural Microbiology have discovered the crystal structure of virulence factor SspH2, which is deployed by Salmonella, a mean strain of bacteria that can cause food poisoning, typhoid fever and septicemia. With colleagues at Yale University, they performed a series of biochemical experiments to show that SspH2 is an enzyme that links two molecules together, called a ligase. Specifically, it is involved in the targeting of a widespread regulatory molecule called ubiquitin to other proteins. Ubiquitin’s most common function is to label proteins for degradation in a process called ubiquitination.

“It’s a totally new ubiquitin ligase from a bacterial pathogen going in and messing around with human cell chemistry,” says Stebbins. “It’s a good example of the amazing ways bacteria have found to play around with our biochemistry for its own purposes.”

The structure, derived from the pattern of light bouncing off of a crystallized form of SspH2, reveals the identity and position of every atom in the virulence factor. It shows that it has two primary arms: One is a known structure that recruits other proteins, but the second had never been seen before. The Stebbins team named it NEL for Novel E3 Ligase. The two arms conceal a key amino acid — cysteine — required to bind to ubiquitin. In test-tube experiments, Stebbins and colleagues showed that in order to capture the ubiquitin, one arm must swing apart to expose the cysteine, and moreover, it must do so in a selective fashion. They generated a version of the molecule effectively locked in its open state and found that it was toxic to the cells it invaded.

The process of attaching ubiquitin to targeted proteins — ubiquitination — is very common in the cells of complex organisms and involves three different types of molecules such as SspH2. Molecules known as E1 capture the ubiquitin and hand it off to E2 molecules. E3 molecules then bring the E2 and its ubiquitin to attach to specific proteins. Stebbins and colleagues determined that SspH2 is a new member of this third family and that it targets proteins on top of cell membranes, but exactly which ones remain to be seen.

“When we find that out, we’ll know exactly what this ubiquitin ligase is doing,” Stebbins says. The findings are published this week in the Proceedings of the National Academy of Sciences.

More information: Proceedings of the National Academy of Sciences online, A family of Salmonella virulence factors functions as a distinct class of E3 ubiquitin ligases, Cindy M. Quezada, Stuart W. Hicks, Jorge E. Galán and C. Erec Stebbins

Provided by Rockefeller University

Explore further: Out of the lamplight

Related Stories

Out of the lamplight

July 31, 2015

The human body is governed by complex biochemical circuits. Chemical inputs spur chain reactions that generate new outputs. Understanding how these circuits work—how their components interact to enable life—is critical ...

Why bacteria could be the answer to a future without oil

July 30, 2015

Chemicals are all around us. They are crucial in all manner of industries, from agriculture to food to cosmetics. Most people give little thought to how these chemicals are made – and certainly very few would consider the ...

Recommended for you

Findings illuminate animal evolution in protein function

July 27, 2015

Virginia Commonwealth University and University of Richmond researchers recently teamed up to explore the inner workings of cells and shed light on the 400–600 million years of evolution between humans and early animals ...

New polymer able to store energy at higher temperatures

July 30, 2015

(Phys.org)—A team of researchers at the Pennsylvania State University has created a new polymer that is able to store energy at higher temperatures than conventional polymers without breaking down. In their paper published ...

How to look for a few good catalysts

July 30, 2015

Two key physical phenomena take place at the surfaces of materials: catalysis and wetting. A catalyst enhances the rate of chemical reactions; wetting refers to how liquids spread across a surface.

Yarn from slaughterhouse waste

July 29, 2015

ETH researchers have developed a yarn from ordinary gelatine that has good qualities similar to those of merino wool fibers. Now they are working on making the yarn even more water resistant.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.