Powerful New Technique to Measure Asteroids' Sizes and Shapes

February 4, 2009
Artist’s impression of the asteroid (234) Barbara. Thanks to a unique method that uses ESO’s Very Large Telescope Interferometer, astronomers have been able to measure sizes of small asteroids in the main belt for the first time. Their observations also suggest that Barbara has a complex concave shape, best modelled as two bodies that may possibly be in contact. Credit: ESO/L. Calçada

A team of French and Italian astronomers have devised a new method for measuring the size and shape of asteroids that are too small or too far away for traditional techniques, increasing the number of asteroids that can be measured by a factor of several hundred. This method takes advantage of the unique capabilities of ESO's Very Large Telescope Interferometer (VLTI).

"Knowledge of the sizes and shapes of asteroids is crucial to understanding how, in the early days of our Solar System, dust and pebbles collected together to form larger bodies and how collisions and re-accumulation have since modified them," says Marco Delbo from the Observatoire de la Côte d'Azur, France, who led the study.

Direct imaging with adaptive optics on the largest ground-based telescopes such as the Very Large Telescope (VLT) in Chile, and space telescopes, or radar measurements are the currently favoured methods of asteroid measurement. However, direct imaging, even with adaptive optics, is generally limited to the one hundred largest asteroids of the main belt, while radar measurements are mostly constrained to observations of near-Earth asteroids that experience close encounters with our planet.

Delbo and his colleagues have devised a new method that uses interferometry to resolve asteroids as small as about 15 km in diameter located in the main asteroid belt, 200 million kilometres away. This is equivalent to being able to measure the size of a tennis ball a distance of a thousand kilometres. This technique will not only increase the number of objects that can be measured dramatically, but, more importantly, bring small asteroids that are physically very different from the well studied larger ones into reach.

The interferometric technique combines the light from two or more telescopes. Astronomers proved their method using ESO's VLTI, combining the light of two of the VLT's 8.2-metre Unit Telescopes. "This is equivalent to having vision as sharp as that of a telescope with a diameter equal to the separation between the two VLT Unit Telescopes used, in this case, 47 metres," says co-author Sebastiano Ligori, from INAF-Torino, Italy. The researchers applied their technique to the main belt asteroid (234) Barbara, which was earlier found, by co-author Alberto Cellino, to have rather unusual properties. Although it is so far away, the VLTI observations also revealed that this object has a peculiar shape. The best fit model is composed of two bodies each the size of a major city - with diameters of 37 and 21 km - separated by at least 24 km. "The two parts appear to overlap," says Delbo, "so the object could be shaped like a gigantic peanut or, it could be two separate bodies orbiting each other."

If Barbara proves to be a double asteroid, this is even more significant: by combining the diameter measurements with the parameters of the orbits, astronomers can then compute the density of these objects. "Barbara is clearly a high priority target for further observations," concludes Ligori.

Having proven the validity of their new and powerful technique, the team can now start a large observing campaign to study small asteroids.

These observations are presented in a paper by Delbo M. et al., First VLTI-MIDI direct determinations of asteroid sizes, in press in the Astrophysical Journal.

Provided by ESO

Explore further: The planet Mercury

Related Stories

The planet Mercury

August 6, 2015

Mercury is the closest planet to our sun, the smallest of the eight planets, and one of the most extreme worlds in our solar systems. Named after the Roman messenger of the gods, the planet is one of a handful that can be ...

Earth flyby of 'space peanut' captured in new video

July 31, 2015

NASA scientists have used two giant, Earth-based radio telescopes to bounce radar signals off a passing asteroid and produce images of the peanut-shaped body as it approached close to Earth this past weekend.

What is the newest planet?

July 7, 2015

With astronomers discovering new planets and other celestial objects all the time, you may be wondering what the newest planet to be discovered is. Well, that depends on your frame of reference. If we are talking about our ...

Recommended for you

At Saturn, one of these rings is not like the others

September 2, 2015

When the sun set on Saturn's rings in August 2009, scientists on NASA's Cassini mission were watching closely. It was the equinox—one of two times in the Saturnian year when the sun illuminates the planet's enormous ring ...

New Horizons team selects potential Kuiper Belt flyby target

August 29, 2015

NASA has selected the potential next destination for the New Horizons mission to visit after its historic July 14 flyby of the Pluto system. The destination is a small Kuiper Belt object (KBO) known as 2014 MU69 that orbits ...

Prawn Nebula: Cosmic recycling

September 2, 2015

Dominating this image is part of the nebula Gum 56, illuminated by the hot bright young stars that were born within it. For millions of years stars have been created out of the gas in this nebula, material which is later ...

Image: Hubble sees a youthful cluster

August 31, 2015

Shown here in a new image taken with the Advanced Camera for Surveys (ACS) on board the NASA/ESA Hubble Space Telescope is the globular cluster NGC 1783. This is one of the biggest globular clusters in the Large Magellanic ...

3 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

barakn
3 / 5 (2) Feb 04, 2009
They didn't prove the validity of their new technique as claimed because they didn't apply it to an asteroid whose size and shape is already known.
LuckyBrandon
not rated yet Feb 04, 2009
ah thats a good point actually.....proof of concepts always occur against a "known good"
KBK
not rated yet Feb 04, 2009
A known good would also require several different correlations to be relatively 'non suspect'. The opposing side of the table could chime in that this new method is more accurate..therefore...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.