New Nanoparticle to Help Researchers Study Angiogenesis

January 15, 2009 By Debra Kain

(PhysOrg.com) -- Adah Almutairi, Ph.D., assistant professor in the Skaggs School of Pharmacy and Pharmaceutical Sciences at the University of California, San Diego, is first author of a paper recently published in the Proceedings of the National Academy of Sciences (PNAS.) The work of Almutairi and her former colleagues at UC Berkeley, along with researchers from the Washington University School of Medicine, describes a novel synthetic nanoparticle developed for noninvasive imaging of angiogenesis.

Angiogenesis, or the formation of new blood vessels, plays an important role in many human diseases such as cancer or heart disease such as weakening of the heart muscle (cardiomyopathy) or thickening and hardening of the arteries (atherosclerosis). Nanotechnology has the potential to revolutionize the diagnosis and treatment of these disorders, and the research team has developed a biodegradable nanoprobe to target a biological marker known to modulate angiogenesis.

“One challenge of nanoparticles has been the difficulty in targeting where they go, because of the properties of size and structure,” said Almutairi. “Either they are unable to diffuse into tissue, because the nanoparticles are too large, or - if too small - they clear out of the system too rapidly.” The nanoparticles also have to be structurally camouflaged so they aren’t attacked by the system’s immune system.

The researchers designed a nanoprobe that is commercially viable because it is biodegradable and dissolves so has no long-term, toxic effect, according to Almutairi.

“This particle is small enough to easily circulate - about ten to 12 nanometers in size, where most nanoparticles are about 50 nanometers,” Almutairi said. “We also ‘decorated’ it with targeting groups in a novel way so that it can recognize diseased tissue.”

Most importantly, this nanoprobe has increased selectivity for cells that express a specific integrin receptor, αvβ3, which serves as a biological marker for angiogenesis. These adhesive receptors are critical for the proliferation, survival and function of new blood vessels.

Almutairi says she hopes to collaborate with cancer researchers who can use this nanoparticle in the development of new diagnostics and therapeutics.

Provided by University of California, San Diego

Explore further: Research tests how people make moral decisions using classic dilemmas

Related Stories

Researchers predict sudden cardiac death risk

August 23, 2016

Each year more than 300,000 Americans will succumb to out-of-hospital sudden cardiac death (SCD)—the immediate and unexpected cessation of the heart's ability to function properly—one of the leading causes of death in ...

Research shows standing desks lower BMI

August 23, 2016

Most of us have heard that standing desks are good for us, and it makes sense it would also be good for our children. Now, for the first time, there's evidence that this simple change in classroom furniture can slow the increase ...

Recommended for you

Neuromorphic computing mimics important brain feature

August 18, 2016

(Phys.org)—When you hear a sound, only some of the neurons in the auditory cortex of your brain are activated. This is because every auditory neuron is tuned to a certain range of sound, so that each neuron is more sensitive ...

'Artificial atom' created in graphene

August 22, 2016

In a tiny quantum prison, electrons behave quite differently as compared to their counterparts in free space. They can only occupy discrete energy levels, much like the electrons in an atom - for this reason, such electron ...

Picoscale precision though ultrathin film piezoelectricity

August 10, 2016

Piezoelectricity (aka the piezoelectric effect) occurs within certain materials – crystals (notably quartz), some ceramics, bone, DNA, and a number of proteins – when the application of mechanical stress or vibration ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.