New Nanoparticle to Help Researchers Study Angiogenesis

Jan 15, 2009 By Debra Kain

(PhysOrg.com) -- Adah Almutairi, Ph.D., assistant professor in the Skaggs School of Pharmacy and Pharmaceutical Sciences at the University of California, San Diego, is first author of a paper recently published in the Proceedings of the National Academy of Sciences (PNAS.) The work of Almutairi and her former colleagues at UC Berkeley, along with researchers from the Washington University School of Medicine, describes a novel synthetic nanoparticle developed for noninvasive imaging of angiogenesis.

Angiogenesis, or the formation of new blood vessels, plays an important role in many human diseases such as cancer or heart disease such as weakening of the heart muscle (cardiomyopathy) or thickening and hardening of the arteries (atherosclerosis). Nanotechnology has the potential to revolutionize the diagnosis and treatment of these disorders, and the research team has developed a biodegradable nanoprobe to target a biological marker known to modulate angiogenesis.

“One challenge of nanoparticles has been the difficulty in targeting where they go, because of the properties of size and structure,” said Almutairi. “Either they are unable to diffuse into tissue, because the nanoparticles are too large, or - if too small - they clear out of the system too rapidly.” The nanoparticles also have to be structurally camouflaged so they aren’t attacked by the system’s immune system.

The researchers designed a nanoprobe that is commercially viable because it is biodegradable and dissolves so has no long-term, toxic effect, according to Almutairi.

“This particle is small enough to easily circulate - about ten to 12 nanometers in size, where most nanoparticles are about 50 nanometers,” Almutairi said. “We also ‘decorated’ it with targeting groups in a novel way so that it can recognize diseased tissue.”

Most importantly, this nanoprobe has increased selectivity for cells that express a specific integrin receptor, αvβ3, which serves as a biological marker for angiogenesis. These adhesive receptors are critical for the proliferation, survival and function of new blood vessels.

Almutairi says she hopes to collaborate with cancer researchers who can use this nanoparticle in the development of new diagnostics and therapeutics.

Provided by University of California, San Diego

Explore further: Nanotechnology helps protect patients from bone infection

Related Stories

Recommended for you

Nanotechnology helps protect patients from bone infection

32 minutes ago

Leading scientists at the University of Sheffield have discovered nanotechnology could hold the key to preventing deep bone infections, after developing a treatment which prevents bacteria and other harmful ...

Non-aqueous solvent supports DNA nanotechnology

2 hours ago

Scientists around the world are using the programmability of DNA to assemble complex nanometer-scale structures. Until now, however, production of these artificial structures has been limited to water-based ...

Nanosilver and the future of antibiotics

3 hours ago

Precious metals like silver and gold have biomedical properties that have been used for centuries, but how do these materials effectively combat the likes of cancer and bacteria without contaminating the ...

Engineering phase changes in nanoparticle arrays

May 25, 2015

Scientists at the U.S. Department of Energy's Brookhaven National Laboratory have just taken a big step toward the goal of engineering dynamic nanomaterials whose structure and associated properties can be ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.