Measurement precision beats standard quantum limit

April 21, 2008 By Lisa Zyga feature

For physicists, measuring the precise magnitude of a physical quantity is a key to understanding quantum mechanics. However, there is a limit to how precise a measurement can be made, which is governed by quantum mechanical laws.

In search of a more precise measurement of quantum phases, researchers from the University of Science and Technology of China have demonstrated a new measurement method that relies on multi-photon entanglement and the interference effect it generates.

“High resolution quantum phase measurements will help to measure other related physical parameters with high precision, such as time shift, distance, etc.,” physicist Fangwen Sun told Sun is currently with the Optical Nanostructure Laboratory at Columbia University in New York.

In their study, which is published in a recent issue of Europhysics Letters, Sun and his colleagues describe an experiment where they achieve a phase measurement precision that surpasses the standard quantum limit, and nearly reaches the Heisenberg limit.

“The scheme can be generalized to high-photon-number states,” Sun said. “There is no fundamental obstacle to achieve the precision approaching the Heisenberg limit.”

As the researchers explain, the standard quantum limit is not the ultimate limit for measurement precision of quantum phases. Using a technique called squeezed-state-based interferometry, previous studies have already surpassed the standard quantum limit. However, the Heisenberg limit is considered the ultimate limit. Although researchers have proposed a number of schemes to approach this limit, none have been realized due an effect called loss.

“The standard quantum limit is achieved with a regular source of light such as a laser,” Sun explained. “It goes as 1/N1/2 for N photons. The Heisenberg limit goes as 1/N for N photons. It can be achieved with quantum sources of light that exhibit special entanglement properties.” But, he added, “It has been proven that the Heisenberg limit is the true quantum limit and cannot be surpassed.”

In their experiment, the researchers designed a method that is not as sensitive to loss as the previous proposals, and so it has a higher probability of resulting in an extremely precise measurement. First, the physicists generated an entangled state by injecting a two-photon Fock state into a beam splitter. Then, the entangled photons traveled through a line of optical elements including a half-wave plate, interference filter, and phase shifter. At the end, the physicists used a recently developed method called quantum state projection to extract the phase information from the entangled photons.

“It is the collective effect of all the photons that improves the precision,” Sun said, explaining why better photon entanglement results in higher precision measurements. “The higher entanglement, the more collective effect.”

With their new measurement technique, the researchers achieved a phase measurement precision of 0.506 for a two-photon state and 0.291 for a four-photon state. By contrast, the precision values set by the standard quantum limit are 0.707 and 0.5, respectively. For comparison, the Heisenberg limit has values of 0.289 and 0.25, which are thought to be impossible to achieve.

Nevertheless, the physicists hope that, with anticipated improvements in technology leading to more efficient multi-photon detectors, the measurements might yield even more precise results.

More information: Sun, F. W.; Liu, B. H.; Gong, Y. X.; Huang, Y. F.; Ou, Z. Y., Guo, G. C. “Experimental demonstration of phase measurement precision beating standard quantum limit by projection measurement.” Europhysics Letters, 82 (2008) 24001.

Copyright 2008
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of

Explore further: NIST team proves 'spooky action at a distance' is really real

Related Stories

Experiment records extreme quantum weirdness

November 9, 2015

Researchers from the Centre for Quantum Technologies (CQT) at the National University of Singapore and the University of Seville in Spain have reported the most extreme 'entanglement' between pairs of photons ever seen in ...

Researchers take two big steps toward quantum computing

November 6, 2015

(—"Spooky action at a distance," Einstein's famous, dismissive characterization of quantum entanglement, has long been established as a physical phenomenon, and researchers are keen to develop practical applications ...

Calibrating an optical attenuator with few-photon pulses

November 5, 2015

Precise measurements of optical power enable activities from fiber-optic communications to laser manufacturing and biomedical imaging—anything requiring a reliable source of light. This situation calls for light-measuring ...

Researchers observe phase transition thought impossible

October 26, 2015

An ultrapure material taken to pressures greater than that in the depths of the ocean and chilled to temperatures colder than outer space has revealed an unexpected phase transition that crosses two different phase categories.

Recommended for you

'Material universe' yields surprising new particle

November 25, 2015

An international team of researchers has predicted the existence of a new type of particle called the type-II Weyl fermion in metallic materials. When subjected to a magnetic field, the materials containing the particle act ...

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.