'Lost' sediments show details of polar magnetic field

February 28, 2008

UC Davis researchers studying cores of sediment collected 40 years ago have found evidence for magnetic field vortices in the Earth's core beneath the South Pole. The results contrast with earlier studies at lower latitudes, and could lead to a better understanding of processes in the core.

The results came from a seabed sediment core collected by the U.S. Navy in the Antarctic Ross Sea in 1968 as part of Operation Deep Freeze. Samples from the core, covering almost 2.5 million years of the Earth's history, were stored at the Antarctic Marine Geology Research Facility in Tallahassee, Fla., before being re-discovered by Ken Verosub, professor of geology at UC Davis, who brought them back to Davis for magnetic analysis.

Exposed rock on land is weathered into fine grains that are washed out to sea and settle to the bottom. If the grains are magnetic, they will tend to align themselves with the Earth's magnetic field as they settle through the water column.

Verosub's lab uses highly sensitive equipment to measure the orientation of these magnetic grains in the sediments. That ancient magnetic record can be precisely dated by comparison to other rocks, and gives information about the behavior of the planet's magnetic field in the distant past.

"I think this is one of the best palaeomagnetic records yet from the Ross Sea," Verosub said.

Verosub, graduate student Luigi Jovane, postdoctoral researcher Gary Acton and Fabio Florindo at the National Institute for Geophysics and Vulcanology in Rome, Italy, found that there was more "scatter" in the magnetic directions than would be predicted, based on what is known about the Earth's magnetic field from cores collected closer to the equator.

But the results do compare well with recent computer simulations of fluid movement in the planet's core, which predict the existence of vortices in the magnetic field near the poles, Verosub said.

The paper is published online by the journal Earth and Planetary Science Letters, and will appear in the March 30 print edition of the journal.

Source: University of California - Davis

Explore further: Chandra data suggest giant collision triggered 'radio phoenix'

Related Stories

The gas giant Jupiter

August 26, 2015

Ever since the invention of the telescope four hundred years ago, astronomers have been fascinated by the gas giant known as Jupiter. Between it's constant, swirling clouds, its many, many moons, and its red spot, there are ...

IRIS and Hinode: A Stellar research team

August 25, 2015

Modern telescopes and satellites have helped us measure the blazing hot temperatures of the sun from afar. Mostly the temperatures follow a clear pattern: The sun produces energy by fusing hydrogen in its core, so the layers ...

High-energy observatory launches this week

August 19, 2015

If everything goes according to plan, on Wednesday, Aug. 19, at 6:45 a.m. St. Louis time, NASA TV will broadcast the launch of a cargo container at the Tanegashima Space Center off the southern coast of Japan. In addition ...

Recommended for you

Earth's mineralogy unique in the cosmos

August 26, 2015

New research from a team led by Carnegie's Robert Hazen predicts that Earth has more than 1,500 undiscovered minerals and that the exact mineral diversity of our planet is unique and could not be duplicated anywhere in the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.