NIST reference materials are 'gold standard' for bio-nanotech research

January 9, 2008
NIST reference materials are 'gold standard' for bio-nanotech research
False color scanning electron micrograph (250,000 times magnification) showing the gold nanoparticles created by NIST and the National Cancer Institute's Nanotechnology Characterization Laboratory for use as reference standards in biomedical research laboratories. Credit: Andras Vladar, NIST

The National Institute of Standards and Technology has issued its first reference standards for nanoscale particles targeted for the biomedical research community—literally “gold standards” for labs studying the biological effects of nanoparticles. The three new materials, gold spheres nominally 10, 30 and 60 nanometers in diameter, were developed in cooperation with the National Cancer Institute’s Nanotechnology Characterization Laboratory (NCL).

Nanosized particles are the subject of a great deal of biological research, in part because of concerns that in addition to having unique physical properties due to their size, they also may have unique biological properties. On the negative side, nanoparticles may have special toxicity issues.

On the positive side, they also are being studied as vehicles for targeted drug delivery that have the potential to revolutionize cancer treatments. Research in the field has suffered from a lack of reliable nanoscale measurement standards, both to ensure consistency of data from one lab to the next and to verify the performance of measurement instruments and analytic techniques.

The new NIST reference materials are citrate-stabilized nanosized gold particles in a colloidal suspension in water. They have been extensively analyzed by NIST scientists to assess particle size and size distribution by multiple techniques for dry-deposited, aerosol and liquid-borne forms of the material. Dimensions were measured using six independent methods—including atomic force microscopy (AFM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), differential mobility analysis (DMA), dynamic light scattering (DLS), and small-angle X-ray scattering (SAXS). At the nanoscale in particular, different measurement techniques can and will produce different types of values for the same particles.

In addition to average size and size distributions, the new materials have been chemically analyzed for the concentrations of gold, chloride ion, sodium and citrate, as well as pH, electrical conductivity, and zeta potential (a measure of the stability of the colloidal solution). They have been sterilized with gamma radiation and tested for sterility and endotoxins. Details of the measurement procedures and data are included in a report of investigation accompanying each sample.

Source: National Institute of Standards and Technology

Explore further: Mechanical quanta see the light

Related Stories

Mechanical quanta see the light

January 19, 2016

Interconnecting different quantum systems is important for future quantum computing architectures, but has proven difficult to achieve. Researchers from the TU Delft and the University of Vienna have now realized a first ...

'Squishy' robot fingers aid deep sea exploration

January 20, 2016

During a 2014 talk on his exploration of deep-sea coral reefs, Baruch College marine biologist David Gruber showed a video of clunky robotic hands collecting fragile specimens of coral and sponges from the ocean floor. Harvard ...

Fighting fire with FireFOAM

January 5, 2016

Roughly 40 percent of all industrial property loss in the United States comes from fire, and fire is the leading cause of commercial property damage. For insurance companies, understanding how fires spread can help save their ...

How strong is gravity on other planets?

January 1, 2016

Gravity is a fundamental force of physics, one which we Earthlings tend to take for granted. You can't really blame us. Having evolved over the course of billions of years in Earth's environment, we are used to living with ...

Recommended for you

New nanotechnology detects biomarkers of cancer

February 12, 2016

Researchers at Wake Forest Baptist Medical Center have developed a new technology to detect disease biomarkers in the form of nucleic acids, the building blocks of all living organisms.

A new way to make higher quality bilayer graphene

February 8, 2016

(Phys.org)—A team of researchers with members from institutions in the U.S., Korea and China has developed a new way to make bilayer graphene that is higher in quality than that produced through any other known process. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.