Modified gravity v. dark energy

April 12, 2007 By Miranda Marquit feature

For many years now, scientists have wondered why the universe is expanding faster than it should be. Through conventional knowledge of physics, the universe should be expanding at a slower pace that observations show that it is. “There are two main theories for why the universe is expanding so fast,” Martin Kunz tells “One is modified gravity and the other is the presence of dark energy. We want to figure out how to distinguish between the two.”

Detecting the difference between dark energy and modified gravity would provide physicists with a better understanding of how the universe works. And detecting modified gravity would add a further benefit by contributing to the understanding of one the fundamental forces in the universe.

Kunz, a scientist at the University of Geneva, and his colleague Domenico Sapone have published a Letter in Physical Review Letters addressing the difficulties of distinguishing between modified gravity and dark energy. The Letter is titled “Dark Energy versus Modified Gravity.”

“There are theoretical problems with dark energy,” explains Kunz, “and this had led people to modified Einstein’s general relativity in order to get modified gravity, which some think would explain the expansion of the universe.” The problem, he says, comes in when one tries to observe one of these phenomena. “We cannot observe either dark energy or modified gravity directly. We can only observe how galaxies behave.”

Kunz points out that in many models, the universe is shown as smooth, assuming that the energy is evenly distributed and homogenous. “This is not completely the case,” Kunz says. “There are small fluctuations. But many measurements only probe the smooth universe.” He continues: “In this simple model, you can make everything look like a component with negative pressure, there is no way to decide whether it is due to dark energy or a modification of gravity.”

Some scientists have looked at the growth of structure in the universe as way to distinguish between the effects of modified gravity and the effects of dark energy. It is these measurements that Kunz and Sapone find lacking in terms of ability to detect differences between the two. Through some modeling and equations of their own, the two have found that dark energy perturbations can affect the distribution of galaxies in a way that matches the effects of modified gravity. “At a certain level, dark energy and modified gravity look the same,” Kunz explains.

“People hoped that you could prove general relativity wrong by studying how structure forms in the universe,” Kunz says. “We showed that you could rule out certain models of dark energy, but not general relativity itself.”

So, while Kunz and Sapone did not manage to show how to distinguish dark energy from modified gravity, they did discover new avenues that need to be explored in the debate of modified gravity versus dark energy. And they discovered something else: “One thing we saw that was really essential was anisotropic stress,” says Kunz. “The presence or absence of anisotropic stress might help to distinguish between the two. If we measure the presence of anisotropic stress in the universe, it is more likely to be modified gravity.”

Kunz also sees hope for the future of settling this debate. “Over the next few years, precise measurements of weak gravitational lensing will become possible, which also measures anisotropic stress. Combined with the next round of distance measurements with supernovae, we will be able to get good constraints.”

Copyright 2007
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of

Explore further: Rosetta scientists unveil the source of ice and dust jets on comet 67P

Related Stories

Going green: Microalgae as a feedstuff for grower steers

July 21, 2015

Algae are organisms so environmentally adaptable that they flourish in wastelands, sewage and saline bodies of water. They can grow in high densities, in the dark and in the presence of high concentrations of nitrogen and ...

Cosmology looks beyond the standard model

July 8, 2015

What are the mysterious dark matter and dark energy that seem to account for so much of our Universe? Why is the Universe expanding? For the past 30 years, most cosmologists have looked to the 'standard model' to answer ...

Recommended for you

Fusion reactors 'economically viable' say experts

October 2, 2015

Fusion reactors could become an economically viable means of generating electricity within a few decades, and policy makers should start planning to build them as a replacement for conventional nuclear power stations, according ...

Iron-gallium alloy shows promise as a power-generation device

September 29, 2015

An alloy first made nearly two decades ago by the U. S. Navy could provide an efficient new way to produce electricity. The material, dubbed Galfenol, consists of iron doped with the metal gallium. In new experiments, researchers ...

Extending a battery's lifetime with heat

October 1, 2015

Don't go sticking your electronic devices in a toaster oven just yet, but for a longer-lasting battery, you might someday heat them up when not in use. Over time, the electrodes inside a rechargeable battery cell can grow ...

Invisibility cloak might enhance efficiency of solar cells

September 30, 2015

Success of the energy turnaround will depend decisively on the extended use of renewable energy sources. However, their efficiency partly is much smaller than that of conventional energy sources. The efficiency of commercially ...

Scientists produce status check on quantum teleportation

September 30, 2015

Mention the word 'teleportation' and for many people it conjures up "Beam me up, Scottie" images of Captain James T Kirk. But in the last two decades quantum teleportation – transferring the quantum structure of an object ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.