New research increases understanding of Earth's magnetic field

March 9, 2007

Research recently conducted at Delft University of Technology, Netherlands, marks an important step forward in understanding the origins of the Earth's magnetic field. The research findings are published this week in the scientific journal Physical Review Letters.

Science attributes the creation of the Earth's magnetic field to the movement of electricity conducting liquids in the molten core of the Earth. Researchers have recently conducted experiments to replicate and study this mechanism.

Experiments conducted in Riga (1999) revealed for the first time that a cylindrical-shaped fluid flow of metal moving in a spiralling motion can generate a slowly growing magnetic field. This was followed by the EU research project MAGDYN (2001-2005), which aimed to show how the generated magnetic field itself is capable of persisting.

The design of these experiments and the theoretical interpretation of the data relied heavily on the statistical simulation models developed by Dr. Sasa Kenjeres and Prof. Kemal Hanjalic of Delft University of Technology's Multi Scale Physics department. Moreover, their theoretical and statistical model was the first to explain and predict the observable effects in Riga.

Based on the findings of Kenjeres and Hanjalic, a new generation of experimental facilities have now been developed in the US (Los Alamos and Maryland, among other places), Grenoble and Russia (Perm). These facilities will allow the Earth's magnetic core to be replicated more realistically than ever before. The new experiments are expected to provide valuable new insights into the Earth's magnetic field.

Source: Delft University of Technology

Explore further: Earth not due for a geomagnetic flip in the near future, researchers show

Related Stories

What's it like to see auroras on other planets?

November 10, 2015

Witnessing an aurora first-hand is a truly awe-inspiring experience. The natural beauty of the northern or southern lights captures the public imagination unlike any other aspect of space weather. But auroras aren't unique ...

Recommended for you

A quantum of light for materials science

December 1, 2015

Computer simulations that predict the light-induced change in the physical and chemical properties of complex systems, molecules, nanostructures and solids usually ignore the quantum nature of light. Scientists of the Max-Planck ...

Quantum dots used to convert infrared light to visible light

December 1, 2015

(—A team of researchers at MIT has succeeded in creating a double film coating that is able to convert infrared light at modest intensities into visible light. In their paper published in the journal Nature Photonics, ...

Test racetrack dipole magnet produces record 16 tesla field

November 30, 2015

A new world record has been broken by the CERN magnet group when their racetrack test magnet produced a 16.2 tesla (16.2T) peak field – nearly twice that produced by the current LHC dipoles and the highest ever for a dipole ...

Turbulence in bacterial cultures

November 30, 2015

Turbulent flows surround us, from complex cloud formations to rapidly flowing rivers. Populations of motile bacteria in liquid media can also exhibit patterns of collective motion that resemble turbulent flows, provided the ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.