Cells selectively absorb short nanotubes

March 30, 2007
Cells selectively absorb short nanotubes
Nanotube length threshold: NIST experiments using human lung cells demonstrate that DNA-wrapped single-walled carbon nanotubes longer than about 200 nanometers are excluded from cells, while shorter lengths are able to penetrate the cell interior (dark lines in the fluorescence image above). Credit: NIST

DNA-wrapped single-walled carbon nanotubes (SWCNTs) shorter than about 200 nanometers readily enter into human lung cells and so may pose an increased risk to health, according to scientists at the National Institute of Standards and Technology. The results of their laboratory studies appear in an upcoming issue of Advanced Materials.

Eyed for uses ranging from electronic displays to fuel cells to water filtration, SWCNTs are tiny cylinders—essentially single-sheet rolls of carbon atoms. They are many times stronger than steel and possess superlative thermal, optical and electronic properties, but safety and biocompatibility remain an open question.

"Published data citing in vitro (outside the body) toxicity are particularly inconsistent and widely disputed," writes biomaterials scientist Matthew Becker and his NIST colleagues. Public concerns surrounding the environmental, health and safety impacts of SWCNTs could derail efforts to fast track the development of nanotubes for advanced technology applications. A significant hurdle in outlining the parameters contributing to nanotube toxicity is to prepare well-defined and characterized nanotube samples, as they typically contain a distribution of lengths, diameters, twists and impurities.

The team chose to isolate the effects of nanotube length. They first adsorbed short DNA molecules onto the nanotubes because this renders them soluble in water and allows them to be sorted and separated by length. The researchers then exposed human lung fibroblasts to solutions containing unsorted nanotubes. Regardless of the concentration levels, the cells did not absorb between about one-fourth and one-third of the SWCNTs in the solutions. Further examination of the results revealed that only short nanotubes made it into the cellular interior.

In the next phase of the research, the team exposed the cells to sorted nanotubes of controlled length. They found that tubes longer than about 200 nanometers were excluded from the cells and remained in solution. Cells exposed to the longer nanotube solutions did not undergo a decrease in metabolic activity, but cells exposed to nanotubes below that threshold absorbed them and, depending on the concentration level, died or showed other signs of toxicity. "Our results demonstrate that cellular uptake in these lung cells depends significantly on the length of the nanotubes," Becker explains. "This is the first of many steps in the critical goal of reducing health risk by de novo engineering of the nanotubes themselves."

Citation: M.L. Becker, J.A. Fagan, N.D. Gallant, B.J. Bauer, V. Bajpai, E.K. Hobbie, S.H. Lacerda, K. B. Migler and J.P. Jakupciak. Length-dependent uptake of DNA-wrapped single-walled carbon nanotubes. Advanced Materials, published on-line : 20 March 2007.

Source: National Institute of Standards and Technology

Explore further: Why a new transparent conducting material is sorely needed for touch screens

Related Stories

'Harmful' effects paradoxically enhance solar cell efficiency

November 12, 2015

(Phys.org)—Dissipation and decoherence are typically considered harmful to solar cell efficiency, but in a new paper scientists have shown that these effects paradoxically make the exciton lifetime in semiconducting carbon ...

Making green fuels, no fossils required

November 2, 2015

Using solar or wind power to produce carbon-based fuels, which are commonly called fossil fuels, might seem like a self-defeating approach to making a greener world. But when the starting material is carbon dioxide, which ...

Researchers design and patent graphene biosensors

November 13, 2015

The Moscow Institute of Physics and Technology (MIPT) is patenting biosensor chips based on graphene, graphene oxide and carbon nanotubes that will improve the analysis of biochemical reactions and accelerate the development ...

Recommended for you


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.