'Tornadoes' are transferred from light to sodium atoms

November 9, 2006
Quantum weirdness: Pictures of a BEC 'cloud' of sodium atoms in the NIST experiment to transfer rotational energy to a quantum system show the cloud (a) rotating in a donut-shaped vortex, and interfering with itself as the cloud (b) simultaneously rotates in opposite directions, and (c) simultaneously rotates and stands still. Rotational energy is transferred in quantized amounts. False-color images show (d) one and (e) two units of rotational motion. Credit: NIST

For the first time, tornado-like rotational motions have been transferred from light to atoms in a controlled way at the National Institute of Standards and Technology. The new quantum physics technique can be used to manipulate Bose-Einstein condensates (BECs), a state of matter of worldwide research interest, and possibly used in quantum information systems, an emerging computing and communications technology of potentially great power.

As reported in the Oct. 27 issue of Physical Review Letters, the research team transferred orbital angular momentum--essentially the same motion as air molecules in a tornado or a planet revolving around a star--from laser light to sodium atoms.

The NIST experiment completes the scientific toolkit for complete control of the state of an atom, which now includes the internal, translational, and rotational behavior. The rotational motion of light previously has been used to rotate particles, but this new work marks the first time the motion has been transferred to atoms in discrete, measurable units, or quanta. Other researchers, as well as the NIST group, previously have transferred linear momentum and spin angular momentum (an internal magnetic state) from light to atoms.

The experiments were performed with more than a million sodium atoms confined in a magnetic trap. The atoms were chilled to near absolute zero and in identical quantum states, the condition known as a Bose-Einstein condensate in which they behave like a single "super-atom" with a jelly-like consistency. The BEC was illuminated from opposite sides by two laser beams, one of them with a rotating doughnut shape.

Each atom absorbed one photon (the fundamental particle of light) from the doughnut laser beam and emitted one photon in the path of the other laser beam, picking up the difference in orbital angular momentum between the two photons. The interaction of the two opposing lasers created a corkscrew-like interference pattern, inducing the BEC to rotate--picture a rotating doughnut, or a vortex similar to a hurricane.

The researchers demonstrated control over the process by inducing the cloud of atoms to simultaneously rotate and stand still, or to rotate simultaneously in opposite directions with varying amounts of momentum--a mind-bending peculiarity of quantum physics known as superposition.

Citation: M.F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W.D. Phillips. 2006. Quantized rotation of atoms from photons with orbital angular momentum. Physical Review Letters. Oct. 27.

Source: NIST

Explore further: NASA plans twin sounding rocket launches over Norway this winter

Related Stories

The universe as we know it

November 17, 2015

Sitting in a small French bistro across from Pershing Square in downtown Los Angeles, Clifford Johnson held the pumpkin-hued drinking straw parallel to the table.

The sun

September 28, 2015

The sun is the center of the Solar System and the source of all life and energy here on Earth. It accounts for more than 99.86% of the mass of the Solar System and it's gravity dominates all the planets and objects that orbit ...

Recommended for you

A quantum of light for materials science

December 1, 2015

Computer simulations that predict the light-induced change in the physical and chemical properties of complex systems, molecules, nanostructures and solids usually ignore the quantum nature of light. Scientists of the Max-Planck ...

Quantum dots used to convert infrared light to visible light

December 1, 2015

(Phys.org)—A team of researchers at MIT has succeeded in creating a double film coating that is able to convert infrared light at modest intensities into visible light. In their paper published in the journal Nature Photonics, ...

Test racetrack dipole magnet produces record 16 tesla field

November 30, 2015

A new world record has been broken by the CERN magnet group when their racetrack test magnet produced a 16.2 tesla (16.2T) peak field – nearly twice that produced by the current LHC dipoles and the highest ever for a dipole ...

Turbulence in bacterial cultures

November 30, 2015

Turbulent flows surround us, from complex cloud formations to rapidly flowing rivers. Populations of motile bacteria in liquid media can also exhibit patterns of collective motion that resemble turbulent flows, provided the ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.