A Bunch of Electron Chicanery

Nov 21, 2006
A Bunch of Electron Chicanery
The first bunch compressor for the LCLS, being installed during the current shutdown. This quadrupole magnet is situated on the downstream end of the bunch compressor nearest the electron gun.

As the Linac Coherent Light Source (LCLS) takes shape over the next few years, one of the key issues occupying the minds of physicists is controlling the size and shape of the electron pulses used to generate the x-ray laser light.

Optimal operation of the LCLS will require achieving pulses of electrons that are tightly bunched. This will both ensure that the machine operates the way it was designed and give researchers a means of taking data on an extremely short timescale.

During the current shutdown, technicians have been busy installing the first of two hardware systems onto SLAC's linac that will shorten the length of the electron bunches. Called "bunch compressors" or "magnet chicanes," these devices consist of a series of magnets and drift tubes that divert the electrons flowing through the linac along a bent path that travels out away from the accelerator a short distance and then back.

This out-and-back scheme works because each linac beam pulse contains electrons that have slightly different energies, with electrons in the tail of each bunch being given a higher energy than the electrons in the head of the bunch. Electrons with lower energy are bent more by the bending magnets than electrons with higher energy. When the pulse is made to bend out and back, the low-energy electrons in the head of the bunch travel slightly farther than high-energy electrons in the tail, taking slightly longer, allowing the high-energy electrons in the tail to catch up to the head. The result is a more tightly bunched clump of electrons.

The second bunch compressor, scheduled to be installed during the shutdown of 2007, will be quite a bit longer than the one currently being installed. The first compressor, which is about 18 feet long, is situated near the electron gun where the pulses originate. At this point the pulses have only been accelerated slightly. The second compressor, which will be over 65 feet long, will occupy a spot much further down the linac, by which point the beam has been accelerated to a much higher energy. And because electrons with higher energy bend to a lesser degree than low-energy electrons, a longer compressor is needed to shorten the bunches.

Source: by Brad Plummer, SLAC Today

Explore further: Revealed: Positronium's behavior in particle billiards

Related Stories

Breakthrough in sFLASH seeding experiment

Jun 03, 2015

A team of researchers from DESY, the University of Hamburg and the Technical University of Dortmund has managed to demonstrate seeding by a procedure known as HGHG at the sFLASH test facility in April. "Seeding" ...

On-demand X-rays at synchrotron light sources

May 26, 2015

Consumers are now in the era of "on-demand" entertainment, in which they have access to the books, music and movies they want thanks to the internet. Likewise, scientists who use synchrotron light sources ...

Controlling the internal structure of mitochondria

May 05, 2015

(Phys.org)—One might think of mitochondria as devices for transporting electrons to their lowest energy state. Little bags of finely-tuned respiratory chain subunits which combine electrons extracted from ...

Smaller and cheaper particle accelerators?

Apr 22, 2015

Traditionally, particle accelerators have relied on electric fields generated by radio waves to drive electrons and other particles close to the speed of light. But in radio-frequency machines there is an ...

Accurately counting ions from laboratory radiation exposure

Apr 15, 2015

Thermoluminescence is used extensively in archaeology and the earth sciences to date artifacts and rocks. When exposed to radiation, quartz emits light proportional to the energy it absorbs. Replicating the very low dose ...

Recommended for you

Revealed: Positronium's behavior in particle billiards

20 hours ago

Collision physics can be like a game of billiards. Yet in the microscopic world, the outcome of the game is hard to predict. Fire a particle at a group of other particles, and they may scatter, combine or ...

Extreme lab at European X-ray laser XFEL is a go

Jul 02, 2015

The Helmholtz Senate has given the green light for the Association's involvement in the Helmholtz International Beamline (HIB), a new kind of experimentation station at the X-ray laser European XFEL in Hamburg, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.