Related topics: cells · brain · eye · neurons · stem cells

Finding a cell's true identity

Scientists have long sorted cells into different varieties based on their appearance under a microscope or, for differences that are more visually subtle, based on the behavior of a handful of genes. But in a bid to reveal ...

The science of seeing art and color

During three trips to London at the turn of the 20th century, Claude Monet painted more than 40 versions of a single scene: the Waterloo Bridge over the Thames River. Monet's main subject was not the bridge itself, however; ...

A new generation of artificial retinas based on 2-D materials

Scientists report they have successfully developed and tested the world's first ultrathin artificial retina that could vastly improve on existing implantable visualization technology for the blind. The flexible device, based ...

Curing blindness with stem cells – here's the latest science

In 2006, Nature published a paper describing how stem cells could be used to restore sight in blind mice. This study, and similar subsequent studies, created a lot of excitement about the potential of stem cells to cure blindness ...

Fixated on food?

Contrast has an impact on the optokinetic reflex, which enables us to clearly perceive the landscape from a moving train. Researchers from Ludwig-Maximilians-Universitaet (LMU) in Munich have now shown that visual features ...

page 1 from 8


The vertebrate retina is a light sensitive tissue lining the inner surface of the eye. The optics of the eye create an image of the visual world on the retina, which serves much the same function as the film in a camera. Light striking the retina initiates a cascade of chemical and electrical events that ultimately trigger nerve impulses. These are sent to various visual centers of the brain through the fibers of the optic nerve.

In vertebrate embryonic development, the retina and the optic nerve originate as outgrowths of the developing brain, so the retina is considered part of the central nervous system (CNS).. It is the only part of the CNS that can be imaged non-invasively in the living organism.

The retina is a complex, layered structure with several layers of neurons interconnected by synapses. The only neurons that are directly sensitive to light are the photoreceptor cells. These are mainly of two types: the rods and cones. Rods function mainly in dim light and provide black-and-white vision, while cones support daytime vision and the perception of colour. A third, much rarer type of photoreceptor, the photosensitive ganglion cell, is important for reflexive responses to bright daylight.

Neural signals from the rods and cones undergo complex processing by other neurons of the retina. The output takes the form of action potentials in retinal ganglion cells whose axons form the optic nerve. Several important features of visual perception can be traced to the retinal encoding and processing of light.

This text uses material from Wikipedia, licensed under CC BY-SA