Related topics: cells · genes · cancer · cancer cells · amino acids

Math discovery provides new method to study cell activity, aging

New mathematical tools revealing how quickly cell proteins break down are poised to uncover deeper insights into how we age, according to a recently published paper co-authored by a Mississippi State researcher and his colleagues ...

Exploring extremes in the search for life on Mars

People might assume the search for life on Mars ended when NASA's first rovers sent back images of the planet's barren, inhospitable surface. However, as scientists broaden their understanding of the extreme conditions in ...

By listening, scientists learn how a protein folds

By converting their data into sounds, scientists discovered how hydrogen bonds contribute to the lightning-fast gyrations that transform a string of amino acids into a functional, folded protein.

Study shows plants restrict use of corrective 'Tipp-Ex proteins'

Plants have special corrective molecules at their disposal that can make retrospective modifications to copies of genes. However, it would appear that these "Tipp-Ex proteins" do not have permission to work in all areas of ...

Bacterial proteins shed light on antiviral immunity

A unique collaboration between two UT Southwestern Medical Center labs—one that studies bacteria and another that studies viruses—has identified two immune proteins that appear key to fighting infections. The findings, ...

page 1 from 7

Protein

Proteins (also known as polypeptides) are organic compounds made of amino acids arranged in a linear chain. The amino acids in a polymer chain are joined together by the peptide bonds between the carboxyl and amino groups of adjacent amino acid residues. The sequence of amino acids in a protein is defined by the sequence of a gene, which is encoded in the genetic code. In general, the genetic code specifies 20 standard amino acids, however in certain organisms the genetic code can include selenocysteine — and in certain archaea — pyrrolysine. Shortly after or even during synthesis, the residues in a protein are often chemically modified by post-translational modification, which alter the physical and chemical properties, folding, stability, activity, and ultimately, the function of the proteins. Proteins can also work together to achieve a particular function, and they often associate to form stable complexes.

Like other biological macromolecules such as polysaccharides and nucleic acids, proteins are essential parts of organisms and participate in virtually every process within cells. Many proteins are enzymes that catalyze biochemical reactions and are vital to metabolism. Proteins also have structural or mechanical functions, such as actin and myosin in muscle and the proteins in the cytoskeleton, which form a system of scaffolding that maintains cell shape. Other proteins are important in cell signaling, immune responses, cell adhesion, and the cell cycle. Proteins are also necessary in animals' diets, since animals cannot synthesize all the amino acids they need and must obtain essential amino acids from food. Through the process of digestion, animals break down ingested protein into free amino acids that are then used in metabolism.

Proteins were first described and named by the Swedish chemist Jöns Jakob Berzelius in 1838. However, the central role of proteins in living organisms was not fully appreciated until 1926, when James B. Sumner showed that the enzyme urease was a protein. The first protein to be sequenced was insulin, by Frederick Sanger, who won the Nobel Prize for this achievement in 1958. The first protein structures to be solved were hemoglobin and myoglobin, by Max Perutz and Sir John Cowdery Kendrew, respectively, in 1958. The three-dimensional structures of both proteins were first determined by x-ray diffraction analysis; Perutz and Kendrew shared the 1962 Nobel Prize in Chemistry for these discoveries. Proteins may be purified from other cellular components using a variety of techniques such as ultracentrifugation, precipitation, electrophoresis, and chromatography; the advent of genetic engineering has made possible a number of methods to facilitate purification. Methods commonly used to study protein structure and function include immunohistochemistry, site-directed mutagenesis, and mass spectrometry.

This text uses material from Wikipedia, licensed under CC BY-SA