Related topics: genes

Diversity in typhoid bacteria linked to higher mortality rates

Worldwide, 20% of the bacterial strains that cause typhoid fever have genetic variations in their external layer, called Vi capsule, that provide higher virulence, higher infectivity and high antibiotic resistance, Cornell ...

How a global collaboration is helping protect biodiversity

Ask a 10-year-old to name some extinct animals and they can usually rattle off ancient species such as the Tasmanian Tiger, Woolly Mammoth and Dodo. Some may even be able to tell you what the animals used to look like without ...

Study reveals genetic pathways for citrus flavonoid production

Citrus fruits, celebrated for their zesty taste and dense flavonoid content, are integral to diets for their health-boosting properties. These natural compounds are linked to a spectrum of wellness benefits, yet the genetic ...

From kale to carotenoid powerhouse: Advances in plant nutrition

Carotenoids, vital antioxidants in plants, are integral for human health, enhancing immunity and preventing diseases. However, many vegetables, including Chinese kale, naturally exhibit low carotenoid levels.

page 1 from 2

Genetics

Genetics (from Ancient Greek γενετικός genetikos, “genitive” and that from γένεσις genesis, “origin”), a discipline of biology, is the science of heredity and variation in living organisms. The fact that living things inherit traits from their parents has been used since prehistoric times to improve crop plants and animals through selective breeding. However, the modern science of genetics, which seeks to understand the process of inheritance, only began with the work of Gregor Mendel in the mid-nineteenth century. Although he did not know the physical basis for heredity, Mendel observed that organisms inherit traits via discrete units of inheritance, which are now called genes.

Genes correspond to regions within DNA, a molecule composed of a chain of four different types of nucleotides—the sequence of these nucleotides is the genetic information organisms inherit. DNA naturally occurs in a double stranded form, with nucleotides on each strand complementary to each other. Each strand can act as a template for creating a new partner strand—this is the physical method for making copies of genes that can be inherited.

The sequence of nucleotides in a gene is translated by cells to produce a chain of amino acids, creating proteins—the order of amino acids in a protein corresponds to the order of nucleotides in the gene. This relationship between nucleotide sequence and amino acid sequence is known as the genetic code. The amino acids in a protein determine how it folds into a three-dimensional shape; this structure is, in turn, responsible for the protein's function. Proteins carry out almost all the functions needed for cells to live. A change to the DNA in a gene can change a protein's amino acids, changing its shape and function: this can have a dramatic effect in the cell and on the organism as a whole. Two additional factors that can change the shape of the protein are pH and temperature.

Although genetics plays a large role in the appearance and behavior of organisms, it is the combination of genetics with what an organism experiences that determines the ultimate outcome. For example, while genes play a role in determining an organism's size, the nutrition and other conditions it experiences after inception also have a large effect.

This text uses material from Wikipedia, licensed under CC BY-SA