Physicists discover new properties of superconductivity

New findings from an international collaboration led by Canadian scientists may eventually lead to a theory of how superconductivity initiates at the atomic level, a key step in understanding how to harness the potential ...

The enduring mystery of snowflakes

Who hasn't caught a snowflake in a mitten and marveled at its starlike detail, and then recalled that no two snowflakes are alike? But these crystals of ice are even more different than one might imagine - there are needle-like ...

The 500 phases of matter: Entering a new phase

(Phys.org)—Forget solid, liquid, and gas: there are in fact more than 500 phases of matter. In a major paper in today's issue of Science, Perimeter Faculty member Xiao-Gang Wen reveals a modern reclassification of all of ...

University lab demonstrates 3-D printing in glass

A team of engineers and artists working at the University of Washington's Solheim Rapid Manufacturing Laboratory has developed a way to create glass objects using a conventional 3-D printer. The technique allows a new material ...

Stronger than steel, novel metals are moldable as plastic

(PhysOrg.com) -- Imagine a material that's stronger than steel, but just as versatile as plastic, able to take on a seemingly endless variety of forms. For decades, materials scientists have been trying to come up with just ...

page 1 from 19

Crystal structure

In mineralogy and crystallography, a crystal structure is a unique arrangement of atoms in a crystal. A crystal structure is composed of a motif, a set of atoms arranged in a particular way, and a lattice. Motifs are located upon the points of a lattice, which is an array of points repeating periodically in three dimensions. The points can be thought of as forming identical tiny boxes, called unit cells, that fill the space of the lattice. The lengths of the edges of a unit cell and the angles between them are called the lattice parameters. The symmetry properties of the crystal are embodied in its space group. A crystal's structure and symmetry play a role in determining many of its properties, such as cleavage, electronic band structure, and optical properties.

This text uses material from Wikipedia, licensed under CC BY-SA