The first observation of the nuclear Barnett effect

The electronic Barnett effect, first observed by Samuel Barnett in 1915, is the magnetization of an uncharged body as it is spun on its long axis. This is caused by a coupling between the angular momentum of the electronic ...

Nanoscopic protein motion on a live cell membrane

Cellular functions are dictated by the intricate motion of proteins in membranes that span across a scale of nanometers to micrometers, within a time-frame of microseconds to minutes. However, this rich parameter of space ...

Entangled-photon gyroscope overcomes classical limit

Fiber optic gyroscopes, which measure the rotation and orientation of airplanes and other moving objects, are inherently limited in their precision when using ordinary classical light. In a new study, physicists have experimentally ...

Generating multiphoton quantum states on silicon

In a recent study now published in Light: Science & Applications, Ming Zhang, Lan-Tian Feng and an interdisciplinary team of researchers at the departments of quantum information, quantum physics and modern optical instrumentation ...

page 1 from 17