Direct imaging of active orbitals in quantum materials

In quantum materials based on transition metals, rare-earth and actinide elements, electronic states are characterized by electrons in orbitals d and f, combined with the solid's strong band formation. Until now, to estimate ...

The discrete-time physics hiding inside our continuous-time world

Scientists believe that time is continuous, not discrete—roughly speaking, they believe that it does not progress in "chunks," but rather "flows," smoothly and continuously. So they often model the dynamics of physical ...

Thermodynamic magic enables cooling without energy consumption

Physicists at the University of Zurich have developed an amazingly simple device that allows heat to flow temporarily from a cold to a warm object without an external power supply. Intriguingly, the process initially appears ...

New method enables quantum simulations on larger systems

Through randomly selected measurements, Austrian physicists can now determine the quantum entanglement of many-particle systems. With the newly developed method, quantum simulations can be extended to a larger number of quantum ...

Lasers make magnets behave like fluids

For years, researchers have pursued a strange phenomenon: When you hit an ultra-thin magnet with a laser, it suddenly de-magnetizes. Imagine the magnet on your refrigerator falling off.

page 1 from 5