This article has been reviewed according to Science X's editorial process and policies. Editors have highlighted the following attributes while ensuring the content's credibility:


peer-reviewed publication


Researchers uncover nitrogen's origin and early evolution on Earth

Researchers uncover nitrogen's origin and early evolution on Earth
Combined effect of planetesimal evaporation and core formation on the N abundance and N isotope composition of rocky planets. a–c The N abundance and (d–f) δ15N in the bulk silicate reservoir as a function of the residual N fraction after evaporation. Credit: Nature Communications (2024). DOI: 10.1038/s41467-024-48500-0

A research team led by Prof. Wang Wenzhong from the School of Earth and Space Sciences of the University of Science and Technology of China (USTC), in collaboration with international scholars, studied the fractionation behavior of nitrogen isotopes during the accretionary evolution of terrestrial planets.

The study is published in Nature Communications.

Currently, the academic community primarily holds two models regarding the of volatiles on Earth: the "Late Veneer" model and the "Early Evolution" model.

As is one of the fundamental building blocks of life on Earth, a thorough examination of its accretionary and holds immense significance in comprehending the origin of life-related elements and the evolution of habitability on our planet.

Researchers employed first-principles calculation methods to delve into the fractionation mechanism of nitrogen isotopes (14N and 15N) during the condensation of nebula materials into planetary embryos. The primary focus was on the two stages of melting-volatilization and core-mantle differentiation.

Researchers discovered that under the condition where hydrogen gas had not yet fully dissipated in the early solar nebula, melting-volatilization caused the enrichment of 14N in the planetary embryos, while core-mantle differentiation led to the enrichment of 15N in the silicate melt.

By combining first-principles calculations and observational data, researchers found that the evolution of early planetary embryos alone cannot fully explain the nitrogen isotope composition of the silicate Earth. Considering the late-stage addition of volatile-rich materials (such as ) is necessary.

The nitrogen abundance of the silicate Earth is a result of both and late-stage accretion, but the contribution of late-stage accretion to the abundance of other volatiles is limited.

This research sheds light on the fact that the two crucial stages of early planetesimal melting-volatilization and late accretion of volatile-rich materials jointly determine the nitrogen abundance in the Earth, offering fresh perspectives on the understanding of the origin of volatiles on Earth.

More information: Wenzhong Wang et al, Early planetesimal differentiation and late accretion shaped Earth's nitrogen budget, Nature Communications (2024). DOI: 10.1038/s41467-024-48500-0

Journal information: Nature Communications

Provided by University of Science and Technology of China

Citation: Researchers uncover nitrogen's origin and early evolution on Earth (2024, June 17) retrieved 15 July 2024 from
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Earth may have had all the elements needed for life—contrary to theories that they came from meteorites


Feedback to editors