This article has been reviewed according to Science X's editorial process and policies. Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

peer-reviewed publication

trusted source

proofread

Scientists probe the source of key hydrocarbons on Earth—and in space

Scientists probe the source of key hydrocarbons on Earth—and in space
The formation of naphthalene—the simplest polycyclic aromatic hydrocarbon—from two resonantly stabilized free radicals, propargyl and benzyl. Credit: Ralf I. Kaiser, University of Hawai'i at Manoa

Polycyclic aromatic hydrocarbons (PAHs) are a type of organic molecule that carry fused rings made of the chemical benzene. Scientists believe that PAHs are responsible for chemical processes that eventually lead to soot and other carbonaceous nanoparticles on Earth and around and between the stars in deep space. On Earth, PAHs form in part because of the incomplete combustion of coal, oil, and other substances and are detrimental to human health.

Across the universe, PAHs account for as much as 30% of all carbon, whether around stars, interstellar clouds, or planets. However, scientists do not fully understand the role of reactions involving two in how PAHs form in extreme environments. Free radicals are molecules with an unpaired electron, which is delocalized over at least three atoms. In a study published in the journal Chemical Science, researchers conducted experiments to uncover how the prototype PAH—naphthalene—can form from reactions that take place in the gas phase of matter.

The results provide fundamental knowledge on the processes that can form the simplest representative of PAHs naphthalene—a key ingredient in mothballs. The researchers found that this reaction can occur in the gas phase via the reaction of radicals that are found in combustion flames and in the space around carbon-rich stars. This provides new foundational knowledge of the chemistry and carbon balance of our galaxy.

Polycyclic (PAHs) and their descendant soot particles represent unwanted byproducts in combustion processes of fossil fuel, but scientists do not have a complete understanding of the fundamental mechanisms of their formation. An isomer selective product detection reveals that the reaction of the resonantly stabilized benzyl (C7H7) and the propargyl (C3H3) radicals synthesizes the simplest representative of PAHs—the 10p Hückel aromatic naphthalene (C10H8) molecule.

The gas-phase preparation of naphthalene affords a new concept of the reaction of combustion relevant propargyl radicals with aromatic radicals carrying the radical center at the methylene moiety (aromatic-CH2•), which have been previously overlooked as a source of aromatics in high temperature environments.

This facile Propargyl Addition—BenzAnnulation (PABA) mechanism of propargyl radicals with other aromatic-CH2• radicals beyond benzyl could lead to higher order PAHs like anthracene and phenanthrene. This finding is a fundamental shift in the perception that PAHs are predominantly formed via the Hydrogen-Abstraction—Acetylene Addition (HACA) and Phenyl Addition DehydroCyclization (PAC) pathways in high temperature combustion settings.

This PABA mechanism offers versatile and diverse routes to three key classes of aromatic hydrocarbons: acenes (PAHs consisting of linearly fused benzene rings), phenacenes (PAHs carrying zig-zag structured benzene rings), and helicenes (ortho-condensed PAHs in which benzene rings are angularly annulated yielding helically shaped chiral molecules), thus bringing scientists closer to an understanding of the aromatic universe we live in.

More information: Chao He et al, Unconventional gas-phase preparation of the prototype polycyclic aromatic hydrocarbon naphthalene (C10H8) via the reaction of benzyl (C7H7) and propargyl (C3H3) radicals coupled with hydrogen-atom assisted isomerization, Chemical Science (2023). DOI: 10.1039/D3SC00911D

Journal information: Chemical Science

Citation: Scientists probe the source of key hydrocarbons on Earth—and in space (2023, September 14) retrieved 28 April 2024 from https://phys.org/news/2023-09-scientists-probe-source-key-hydrocarbons.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

A radical shift to link soot formation and interstellar evolution

168 shares

Feedback to editors