This article has been reviewed according to Science X's editorial process and policies. Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

peer-reviewed publication

trusted source

proofread

Novel protocol helps to quantify catchment-scale nitrate yield and fluvial export dynamics

Novel protocol helps to quantify catchment-scale nitrate yield and fluvial export dynamics
Coupling geochemical and molecular techniques for catchment-scale NO3 dynamics. a. Natural abundance isotopes of river waters contain composite information of multiple NO3 sources and various NO3 cycling processes at the catchment scale; b. Coupling potentials of natural abundance isotopes, microbial molecular techniques, and 15N pairing techniques for revealing catchment-scale NO3 dynamics. Credit: WBG

Anthropogenic production of reactive nitrogen (N) is increasing rapidly due to the growing demand for food production. Rivers are the receptors of N, especially nitrate (NO3), produced in their drainage catchments, therefore, quantifying catchment-scale NO3 sources and transformations is vital for understanding the global biogeochemical cycles of N and for remediating river NO3 pollution.

Historically, natural abundance isotopic compositions of NO315N/δ18O-NO3) in a river have been used to reveal catchment-scale NO3 sources and removal, and and 15N pairing experiments can quantify NO3 related processes and their regulators in microenvironments. However, there is a long-standing gap between these techniques because they focus on different aspects of a catchment.

Dr. Jiang Hao, Prof. Zhang Quanfa, and their colleagues from the Wuhan Botanical Garden of the Chinese Academy of Sciences proposed a novel protocol that comprehensively applies natural abundance isotope tracing, 15N pairing and molecular techniques to investigate the NO3 cycling processes and the regulating mechanisms at catchment scales. Their study was published in Science of the Total Environment

By applying the protocol in two catchments on the Qinghai-Tibet Plateau representing varying , the researchers explicitly described the NO3 production and removal processes and their abiotic and biotic driving factors in the catchments. In addition, the spatial variations in the NO3 yield rates and fluvial NO3 export rates were well explained.

The results successfully demonstrated the effectiveness of the protocol in revealing catchment-scale NO3 yield and fluvial NO3 export dynamics.

More information: Hao Jiang et al, Coupling geochemical and microbial molecular techniques to reveal catchment-scale nitrate yield and fluvial export dynamics, Science of The Total Environment (2023). DOI: 10.1016/j.scitotenv.2023.163993

Journal information: Science of the Total Environment

Citation: Novel protocol helps to quantify catchment-scale nitrate yield and fluvial export dynamics (2023, June 20) retrieved 28 April 2024 from https://phys.org/news/2023-06-protocol-quantify-catchment-scale-nitrate-yield.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Scientific challenges and knowledge gaps with nutrient offsetting in waterways

2 shares

Feedback to editors