


## Novel protocol helps to quantify catchmentscale nitrate yield and fluvial export dynamics

June 20 2023, by Zhang Nannan



Coupling geochemical and molecular techniques for catchment-scale  $NO_3^-$  dynamics. a. Natural abundance isotopes of river waters contain composite information of multiple  $NO_3^-$  sources and various  $NO_3^-$  cycling processes at the catchment scale; b. Coupling potentials of natural abundance isotopes, microbial molecular techniques, and <sup>15</sup>N pairing techniques for revealing catchment-scale  $NO_3^-$  dynamics. Credit: WBG



Anthropogenic production of reactive nitrogen (N) is increasing rapidly due to the growing demand for food production. Rivers are the receptors of N, especially nitrate ( $NO_3^-$ ), produced in their drainage catchments, therefore, quantifying catchment-scale  $NO_3^-$  sources and transformations is vital for understanding the global biogeochemical cycles of N and for remediating river  $NO_3^-$  pollution.

Historically, natural abundance isotopic compositions of NO<sub>3</sub><sup>-</sup>  $(\delta^{15}N/\delta^{18}O-NO_3^{-})$  in a river have been used to reveal catchment-scale NO<sub>3</sub><sup>-</sup> sources and removal, and <u>molecular techniques</u> and <sup>15</sup>N pairing experiments can quantify NO<sub>3</sub><sup>-</sup> related processes and their regulators in microenvironments. However, there is a long-standing gap between these techniques because they focus on different aspects of a catchment.

Dr. Jiang Hao, Prof. Zhang Quanfa, and their colleagues from the Wuhan Botanical Garden of the Chinese Academy of Sciences proposed a novel protocol that comprehensively applies natural abundance isotope tracing, <sup>15</sup>N pairing and molecular techniques to investigate the NO<sub>3</sub><sup>-</sup> cycling processes and the regulating mechanisms at catchment scales. Their study was published in *Science of the Total Environment* 

By applying the protocol in two catchments on the Qinghai-Tibet Plateau representing varying <u>environmental conditions</u>, the researchers explicitly described the  $NO_3^-$  production and removal processes and their abiotic and biotic driving factors in the catchments. In addition, the spatial variations in the  $NO_3^-$  yield rates and fluvial  $NO_3^-$  export rates were well explained.

The results successfully demonstrated the effectiveness of the protocol in revealing catchment-scale  $NO_3^-$  yield and fluvial  $NO_3^-$  export dynamics.

More information: Hao Jiang et al, Coupling geochemical and



microbial molecular techniques to reveal catchment-scale nitrate yield and fluvial export dynamics, *Science of The Total Environment* (2023). DOI: 10.1016/j.scitotenv.2023.163993

## Provided by Chinese Academy of Sciences

Citation: Novel protocol helps to quantify catchment-scale nitrate yield and fluvial export dynamics (2023, June 20) retrieved 29 April 2024 from <u>https://phys.org/news/2023-06-protocol-quantify-catchment-scale-nitrate-yield.html</u>

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.