This article has been reviewed according to Science X's editorial process and policies. Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

trusted source

proofread

Gene editing tool could help reduce spread of antimicrobial resistance

bacteria
Credit: Unsplash/CC0 Public Domain

A new tool that could help reduce the spread of antimicrobial resistance is showing early promise, through exploiting a bacterial immune system as a gene editing tool.

Antimicrobial resistance is a major global threat, with nearly 5 million deaths annually resulting from antibiotics failing to treat infection, according to the World Health Organization.

Bacteria often develop resistance when resistant are transported between hosts. One way that this occurs is via plasmids—circular strands of DNA, which can spread easily between bacteria, and swiftly replicate. This can occur in our bodies, and in environmental settings, such as waterways.

The Exeter team harnessed the CRISPR-Cas gene editing system, which can target specific sequences of DNA, and cuts through them when they are encountered. The researchers engineered a plasmid which can specifically target the resistance gene for gentamicin—a commonly used antibiotic.

In laboratory experiments, the new research found that the plasmid protected its from developing resistance. Furthermore, researchers found that the plasmid effectively targeted antimicrobial resistant genes in hosts to which it transferred, reversing their resistance.

A promising new gene editing tool which could be key to reducing the spread of Antimicrobial Resistance (AMR) has been developed by researchers at the University of Exeter University, UK. Credit: Microbiology Society

Lead author David Walker-Sünderhauf, of the University of Exeter, said, "Antimicrobial resistance threatens to outstrip COVID in terms of the number of global deaths. We urgently need new ways to stop resistance spreading between hosts. Our technology is showing early promise to eliminate resistance in a wide range of different bacteria. Our next step is to conduct experiments in more complex microbial communities. We hope one day it could be a way to reduce the spread of in environments such as , which we know are breeding grounds for resistance."

The paper is entitled "Removal of AMR plasmids using a mobile, broad host-range, CRISPR-Cas9 delivery tool," and is published in Microbiology.

More information: David Walker-Sünderhauf et al, Removal of AMR plasmids using a mobile, broad host-range CRISPR-Cas9 delivery tool, Microbiology (2023). DOI: 10.1099/mic.0.001334

Citation: Gene editing tool could help reduce spread of antimicrobial resistance (2023, May 25) retrieved 23 April 2024 from https://phys.org/news/2023-05-gene-tool-antimicrobial-resistance.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Drug resistance molecule can spread though bacterial 'communities'

3 shares

Feedback to editors