This article has been reviewed according to Science X's editorial process and policies. Editors have highlighted the following attributes while ensuring the content's credibility:


peer-reviewed publication

trusted source


New strategy developed for synthesis of copper nanoclusters

New strategy developed for synthesis of copper nanoclusters
The total crystal structure and absorption optical spectrum of Cu13H10(SR)3(PPh3)7 nanoclusters. Credit: Lin Xinzhang

Due to exact atomic composition and crystal structure, atomically precise copper nanoclusters are used as model catalysts for catalytic reaction mechanisms study. However, the efficient synthesis of copper nanoclusters still remains challenging.

In a recent study published in Chemical Science, a research group led by Prof. Huang Jiahui and Prof. Fan Hongjun from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences (CAS) has developed a new strategy for the synthesis of atomically precise copper nanoclusters by solvent-mediated precipitation.

"We named the new strategy as 'solvent-mediated precipitation synthesis (SMPS)''; it was realized to efficiently synthesize Cu13H10(SR)3(PPh3)7 nanoclusters where SR was a thiolate ligand," said Prof. Huang.

The copper nanoclusters, Cu13 for short, were prepared via precipitation, and the excess and by-products were remained in the solution, solving the problems of separation and low yield of Cu nanoclusters.

Single crystal X-ray diffraction analysis showed that the core of the Cu13 nanocluster with a triple axis of symmetry consists of four vertices-sharing tetrahedrons. Electrospray ionization mass spectrometry and confirmed the types and number of hydrogen atoms in Cu13 nanoclusters. Density functional theory calculations simulated the location of 10 hydrides in the .

Moreover, steady-state ultraviolet-visible absorption and fluorescence spectra of Cu13 nanoclusters exhibited unique optical absorbance and photoluminescence.

"This study not only provides a novel SMPS strategy for the efficient synthesis of Cu13 nanoclusters, but also explains the relationship between the structure and optical properties of copper nanoclusters," said Prof. Huang.

More information: Xinzhang Lin et al, Solvent-mediated precipitating synthesis and optical properties of polyhydrido Cu13 nanoclusters with four vertex-sharing tetrahedrons, Chemical Science (2022). DOI: 10.1039/D2SC06099J

Journal information: Chemical Science

Citation: New strategy developed for synthesis of copper nanoclusters (2023, February 27) retrieved 22 February 2024 from
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Nanoclusters with a copper-hydrogen core provide new structure-activity insights


Feedback to editors