This article has been reviewed according to Science X's editorial process and policies. Editors have highlighted the following attributes while ensuring the content's credibility:


peer-reviewed publication

trusted source


New strategy enables stepwise photo-assisted decomposition of carbohydrates to hydrogen

New strategy enables stepwise photo-assisted decomposition of carbohydrates to hydrogen
Illustration of a stepwise method for H2 production from biomass and storage in the form of C1 LHCs. Credit: Luo Nengchao and Ren Puning 

Hydrogen (H2), as a clean energy vector, can be produced via biomass photo-reforming powered by solar light. For future biomass refining, biomass photo-reforming deserves a high decomposition extent of biomass to maximize H2 production.

Recently, a research team led by Prof. Wang Feng, Dr. Luo Nengchao from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences (CAS), in collaboration with Prof. Paolo Fornasiero from University of Trieste, proposed a "C-C bond-first" strategy and realized carbohydrates conversion into C1 liquid hydrogen carriers (LHCs, consisting of HCOOH and HCHO) over Ta-CeO2 photocatalyst. The LHCs could release H2 on site that was needed by either photo- or thermocatalysis.

This work was published in Joule on Jan. 31.

Currently, the main obstacle to high H2 yield is the far insufficient C-C bond breaking to convert carbons into CO2 with maximization of H2 production.

In this study, the researchers demonstrated the significance of prioritized scission of C-C bonds in carbohydrates for photocatalytic hydrogen production and storage.

The proposed "C-C bond first" strategy emphasized prioritized biomass conversion to liquid C1 LHCs via fully breaking the C-C bonds. A synergistic Ta-CeO2 that utilized the photo- and from fully broke the C-C bonds of carbohydrates, producing C1 LHCs comprising HCOOH and HCHO with yields from 62% to 86%.

They found that during photocatalytic oxidation of carbohydrates, the elevated temperature was adopted to inhibit deleterious radical coupling over the strongly distorted Ta-CeO2. The resulting C1 LHCs that could be transported released only H2 and CO2, independent of solar light irradiation. The yield of H2 from glucose was 33%, much higher than that of direct photoreforming of glucose.

"This stepwise method was also exemplified by flow-type photocatalytic oxidation of glucose under concentrated solar light, which enabled 15% yield of C1 LHCs from glucose via a cumulative irradiation time of 15.5 hours," said Prof. Luo.

More information: Puning Ren et al, Stepwise photoassisted decomposition of carbohydrates to H2, Joule (2023). DOI: 10.1016/j.joule.2023.01.002

Journal information: Joule

Citation: New strategy enables stepwise photo-assisted decomposition of carbohydrates to hydrogen (2023, February 10) retrieved 24 June 2024 from
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Hydrogen bonding promotes photocatalytic alcohol coupling


Feedback to editors