This article has been reviewed according to Science X's editorial process and policies. Editors have highlighted the following attributes while ensuring the content's credibility:


peer-reviewed publication

trusted source

written by researcher(s)


Foams used in car seats and mattresses are hard to recycle—a new plant-based version avoids polyurethane's health risks

Foams used in car seats and mattresses are hard to recycle—we made a plant-based version that avoids polyurethane's health risks
These bio-based foams avoid the need for petroleum products. Credit: Srikanth Pilla, CC BY-ND

A new plant-based substitute for polyurethane foam eliminates the health risk of the material, commonly found in insulation, car seats and other types of cushioning, and it's more environmentally sustainable, our new research shows.

Polyurethane foams are all around you, anywhere a is needed for cushioning or structural support. But they're typically made using chemicals that are suspected carcinogens.

Polyurethanes are typically produced in a very fast reaction between two chemicals made by the : polyols and isocyanates. While much work has gone into finding replacements for the polyol component of foams, the isocyanate component has largely remained, despite its consequences for human health. Bio-based foams can avoid that component.

We created a durable bio-based foam using lignin, a byproduct of the paper pulping industry, and a vegetable oil-based curing agent that introduces flexibility and toughness to the final material.

At the heart of the innovation is the ability to create a system that "gels," both in the sense that the materials are compatible with one another and that they physically create a gel quickly so that the addition of a foaming agent can create the lightweight structure associated with .

Lignin is a difficult material to convert into a usable chemical, given its complicated and heterogeneous structure. We used this structure to create a network of bonds that enabled what we believe is the world's first lignin-based nonisocyanate .

The foam can also be recycled because it has bonds that can unzip the chemical network after it has formed. The main components used to produce the foam can then be extracted and used again.

Foams used in car seats and mattresses are hard to recycle—we made a plant-based version that avoids polyurethane's health risks
How the chemicals in bio-based foams can be recycled and reused. Credit: Srikanth Pilla, CC BY-ND

Why it matters

Polyurethane foams are the world's sixth-most-produced yet among the least recycled materials. They are also designed for durability, meaning they will remain in the environment for several generations.

They contribute to the plastic waste problem for the world's oceans, land and air, and to human health problems. Today, plastics can be found in virtually every creature in the terrestrial ecosystem. And since most plastics are made from , they're connected to fossil fuel extraction, which contributes to .

The fully bio-based origin of our foams addresses the issue of carbon neutrality, and the chemical recycling capability ensures that waste plastic has a value attached to it so it is less likely to be thrown away. Ensuring waste has value is a hallmark of the circular approach to manufacturing—attaching a to things tends to decrease the amount that is discarded.

We hope the nature of these foams inspires others to design plastics with the full life cycle in mind. Just as plastics need to be designed according to properties of their initial application, they also need to be designed to avoid the final destination of 90% of plastic waste: landfills and the environment.

What's next

Our initial versions of bio-based foams produce a rigid material suitable for use in foam-core boards used in construction or for insulation in refrigerators. We have also created a lightweight and flexible version that can be used for cushioning and packaging applications. Initial testing of these materials showed good durability in wet conditions, increasing their chance of gaining commercial adoption.

Polyurethane foams are used so extensively because of their versatility. The formulation that we initially discovered is being translated to create a library of precursors that can be mixed to produce the desired properties, like strength and washability, in each application.

More information: James Sternberg et al, Chemical recycling of a lignin-based non-isocyanate polyurethane foam, Nature Sustainability (2023). DOI: 10.1038/s41893-022-01022-3

Journal information: Nature Sustainability

Provided by The Conversation

This article is republished from The Conversation under a Creative Commons license. Read the original article.The Conversation

Citation: Foams used in car seats and mattresses are hard to recycle—a new plant-based version avoids polyurethane's health risks (2023, January 6) retrieved 15 April 2024 from
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Developing more sustainable and recyclable polyurethane foams


Feedback to editors