New strategy enables successive cleavage and functionalization of C–C bonds in alcohols

New strategy enables successive cleavage and functionalization of C–C bonds in alcohols
Schematic illustrations of the manganese oxide for catalytic cleavage and functionalization of alcohols reaction. Credit: He Peipei

A research team led by Prof. Dai Wen from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences (CAS), in collaboration with Associate Prof. Zhang Zehui from South-Central University for Nationalities, developed a new strategy for heterogeneous catalytic successive cleavage and functionalization of C–C bonds in alcohols.

Their findings were published in Chem on March 25.

Given that alcohols can be broadly accessible from both fossil resources and naturally , the oxidative cleavage and functionalization of C–C bonds in alcohols has emerged as a powerful tool for the conversion of alcohols to a variety of value-added chemicals.

Indeed, in the past decades, some homogeneous catalytic systems have been well established for the cleavage and functionalization of alcohols. However, over-reliance on stoichiometric and environmentally unfriendly oxidants, a large excess of a strong base, and/or high loading of precious metal catalysts still limit most of these reaction classes.

The researchers developed a novel and efficient protocol that enables the direct synthesis of amides via heterogeneous manganese oxide catalyzed successive cleavage and amidation of C-C bonds in alcohols with oxygen as an environmentally benign oxidant and ammonia as nitrogen source.

They found that a wide range of primary and secondary alcohols, 1,2-diols, and even β-O-4 and β-1 lignin model compounds could undergo C–C cleavage smoothly to deliver one- or multiple-carbon shorter amides. Moreover, a slight modification of the reaction conditions allowed for the and cyanation of alcohols to access sterically hindered nitriles.

This protocol features good functional-group tolerance, facile scalability, cost-effective and recyclable catalyst, the use of readily available starting materials, a broad substrate scope. It has been applied to the late-stage amidation and cyanation of bioactive alcohols, which offers an efficient way to generate natural product derivatives for and chemical biology.

"Therefore, this method not only complements existing protocols for transformations of alcohols but also expands the new application of the abundant fossil resources and renewable biomass," said Prof. Dai.

More information: Peipei He et al, Heterogeneous manganese-oxide-catalyzed successive cleavage and functionalization of alcohols to access amides and nitriles, Chem (2022). DOI: 10.1016/j.chempr.2022.02.021

Journal information: Chem

Citation: New strategy enables successive cleavage and functionalization of C–C bonds in alcohols (2022, March 31) retrieved 10 May 2024 from https://phys.org/news/2022-03-strategy-enables-successive-cleavage-functionalization.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Novel iron-based catalyst boosts conversion of CO2 to higher alcohols

94 shares

Feedback to editors