The seasonality of oceanic carbon cycling

The seasonality of oceanic carbon cycling
The global carbon cycle depends on the biological carbon pump in the ocean. Surface phytoplankton captures carbon, stores it in cell walls, and transfers the element to the ocean deep after the algae die. Now, researchers are looking at how the seasons might affect this process. Credit: NOAA National Ocean Service/Wikimedia Commons, public domain

The ebb and flow of carbon within Earth's systems are complex and ever-moving occurrences. Carbon is a nomadic element, traveling between the atmosphere, ocean, and the soil, rock, and ice of the planet, changing forms along the way. Much of this cycling takes place in the ocean, partially through a biological carbon pump (BCP). In the BCP, atmospheric carbon is fixed through phytoplankton growing at the surface of the sea. When the phytoplankton dies, carbon particles sink from the surface to deep ocean waters. This carbon can remain for hundreds or even thousands of years before returning to the atmosphere.

In the past, the BCP has been treated as a constant, but the variability of sinking carbon particles has been observed in sediment trap sampling over the past few decades. Now, de Melo VirĂ­ssimo et al. look at how the changing seasons can alter the amount and rate of carbon and other nutrients that sink into .

The researchers used a global ocean biogeochemical model to see how the amount of carbon particles reaching the deep ocean would change with variations in seasonality. In particular, they looked at how both the pattern and the strength of the seasonality would affect the sinking speed of and their attenuation throughout the water column.

When they compared their modeled seasonal results to nonseasonal scenarios, they found that there was an increase of up to 196% of carbon particle transfer when were taken into consideration.

Although their model was a simplified version of a complicated biogeochemical system, they found that particle fluxes in BCP are sensitive to the strength of seasonal fluxes, especially in high-latitude regions. The team notes that this study highlights the importance of seasonality on carbon flux, including the sinking speed and amount of detritus moving through the water column. The adds that if other researchers assume BCP is constant, they may be underestimating how much carbon can be sequestered in the ocean.

Future work should collect new observations to unravel how seasonality can affect detrital sinking speeds. The authors also note that more nuanced inputs of other factors such as and phytoplankton sizes and species could reveal more details about BCP related to seasonal fluxes.

More information: Francisco Melo VirĂ­ssimo et al, Influence of Seasonal Variability in Flux Attenuation on Global Organic Carbon Fluxes and Nutrient Distributions, Global Biogeochemical Cycles (2022). DOI: 10.1029/2021GB007101

Journal information: Global Biogeochemical Cycles

This story is republished courtesy of Eos, hosted by the American Geophysical Union. Read the original story here.

Citation: The seasonality of oceanic carbon cycling (2022, March 4) retrieved 23 February 2024 from
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Budget of dissolved organic carbon in the South China Sea assessed by an eddy-resolving ocean model


Feedback to editors