Europium and light: An innovative platform for quantum computers and communications

Molecules, rare earths, and light: an innovative platform for quantum computers and communications
Illustration representing a quantum computer using a europium molecular crystal. Credit: Christian Grupe

The ability to interact with light provides important functionalities for quantum systems, such as communicating over large distances, a key ability for future quantum computers. However, it is very difficult to find a material that can fully exploit the quantum properties of light. A research team from the CNRS and l'Université de Strasbourg, with support from Chimie ParisTech-PSL and in collaboration with German teams from KIT, has demonstrated the potential of a new material based on rare earths as a photonic quantum system. The results, which were published on 9 March 2022 in Nature, show the potential of europium molecular crystals for quantum memories and computers.

While quantum technologies promise a revolution in the future, they still remain complex to put in place. For example, that can interact with light to create processing functionalities for information and communication through fiber optics in particular, remain rare. Such a platform must ideally include an interface with light as well as information storage units, which is to say a memory. Information processing must also be possible within these units, which take the form of spin. Developing materials that enable a link between spins and light on the quantum level has proven especially difficult.

A team of scientists from the CNRS and l'Université de Strasbourg, with support from Chimie ParisTech-PSL and in collaboration with German teams from KIT, has successfully demonstrated the value of europium molecular crystals for quantum communications and processors, thanks to their ultra-narrow optical transitions enabling optimal interactions with light.

These crystals are the combined product of two systems already used in quantum technology: rare earth ions (such as ), and molecular systems. Rare-earth crystals are known for their excellent optical and spin properties, but their integration in photonic devices is complex. Molecular systems generally lack spins (a storage or computing unit) or—on the contrary—present optical lines that are too broad to establish a reliable link between spins and light.

Europium molecular crystals represent a major advance, as they have ultra-narrow linewidths. This translates into long-lived quantum states, which were used to demonstrate the storage of a light pulse inside these molecular crystals. Moreover, a first building block for a quantum computer controlled by light has been obtained. This new material for offers previously unseen properties, and paves the way for new architectures for computers and quantum memories in which light will play a central role.

The results also open broad prospects for research thanks to the many molecular compounds that can be synthesized.


Explore further

A novel light-spin interface with europium(III) molecule advances development of quantum computers

More information: Philippe Goldner, Ultra-narrow Optical Linewidths in Rare-Earth Molecular Crystals, Nature (2022). DOI: 10.1038/s41586-021-04316-2. www.nature.com/articles/s41586-021-04316-2
Journal information: Nature

Provided by CNRS
Citation: Europium and light: An innovative platform for quantum computers and communications (2022, March 9) retrieved 3 July 2022 from https://phys.org/news/2022-03-europium-platform-quantum.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
616 shares

Feedback to editors