Experimental optimal verification of entangled states using local measurements

Credit: Pixabay/CC0 Public Domain

Quantum information is a field where the information is encoded into quantum states. Taking advantage of the "quantumness" of these states, scientists can perform more efficient computations and more secure cryptography compared to their classical counterparts.

A team led by Prof. Guo Guangcan from University of Science and Technology of China (USTC) of CAS experimentally implemented a scalable quantum state verification on two-qubit and four-qubit entangled states with nonadaptive local measurements. The research results were published in Physical Review Letters on July 17.

The initialization of a quantum system into a certain state is a crucial aspect of science. While a variety of measurement strategies have been developed to characterize how well the system is initialized, for a given one, there is in general a trade-off between its efficiency and the accessible of the quantum state. Conventional quantum state tomography can characterize unknown states while requiring exponentially expensive time-consuming postprocessing.

Alternatively, recent theoretical breakthroughs show that quantum state verification provides a technique to quantify the prepared state with significantly fewer samples, especially for multipartite entangled states.

In the research led by Prof. Guo Guangcan, for all the tested states, the estimated infidelity is inversely proportional to the number of samples, which illustrates the power to characterize a quantum state with a small number of samples. Compared to the globally which requires nonlocal measurements, the efficiency in their experiment is only worse by a small constant factor (<2.5).

They compared the performance difference between quantum state verification and quantum state tomography in an experiment to characterize a four-photon Greenberger-Horne-Zeilinger state, and the results indicate the advantage of quantum state verification in both the achieved efficiency and precision.

They experimentally realized an optimal verification (QSV), which is easy to implement and robust to realistic imperfections. The exhibited 1/n scaling results from the strategy itself without entangled or adaptive measurements.

Their results have clear implications for many quantum measurement tasks and may be used as a firm basis for subsequent work on more complex quantum systems.

More information: Wen-Hao Zhang et al., Experimental Optimal Verification of Entangled States Using Local Measurements, Physical Review Letters (2020). DOI: 10.1103/physrevlett.125.030506

Journal information: Physical Review Letters

Provided by University of Science and Technology of China

Citation: Experimental optimal verification of entangled states using local measurements (2020, July 27) retrieved 24 June 2024 from https://phys.org/news/2020-07-experimental-optimal-verification-entangled-states.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Ultimate precision limit of multi-parameter quantum magnetometry


Feedback to editors