Understanding bushfire-triggered thunderstorms may save lives

thunderstorm
Credit: CC0 Public Domain

Researchers say a better understanding of the dangerous yet surprisingly common phenomenon of wildfires triggering supercell thunderstorms could reduce risk to life and property.

A thunderstorm generated by a New South Wales wildfire reached a height of 12.7 kilometers, according to an analysis involving University of Queensland, Bureau of Meteorology and Monash University researchers.

UQ Atmospheric Observations Research Group leader Professor Hamish McGowan said the fire‐generated thunderstorm also had a large core of rotating winds, indicating that it had indeed developed into a supercell thunderstorm.

"This is the most dangerous type of thunderstorms, generally associated with extremely damaging winds, large hail and lightning.

"Such a storm in proximity to a severe fire can pose a dire risk to firefighters and residents in the affected areas, and the ability to forecast such a risk could make a significant difference to safety."

The Sir Ivan Dougherty wildfire impacted 55,000 hectares of land in New South Wales in February 2017.

"It occurred in and was affected by the passage of a cold front over the wildfire," Professor McGowan said.

"We could show that the cold front's increase in atmospheric moisture, combined with changes in fire behavior at that time, triggered the wildfire‐induced .

With more predicted to result from , the team's findings highlighted the importance of combining radar and on-the-ground meteorological observations, providing insights into this fire‐atmosphere coupling phenomenon.

"These observations are essential, helping us better build an understanding of extreme wildfire events, which could help improve fire behavior predictions," Professor McGowan said.

Researchers used to investigate the dynamics of large plumes of heat, smoke and burning debris—known as pyrometeors—lofted above bushfires.

"These radar observations are then supported with a wide range of other meteorological data from , weather balloons and weather satellites," Professor McGowan said.

"We also used observations of a fire's behavior made by firefighting personnel and local residents to further expand our understanding of fire–atmosphere interactions."

Professor McGowan said the analysis provided information to assist with bushfire management strategies.

The research is published in JGR Atmospheres.


Explore further

Ferocious fires in Australia intensify

More information: Alex Terrasson et al. Weather radar insights into the turbulent dynamics of a wildfire‐triggered supercell thunderstorm, Journal of Geophysical Research: Atmospheres (2019). DOI: 10.1029/2018JD029986
Citation: Understanding bushfire-triggered thunderstorms may save lives (2020, January 6) retrieved 29 March 2020 from https://phys.org/news/2020-01-bushfire-triggered-thunderstorms.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
98 shares

Feedback to editors

User comments