Bubbles hold clue to improved industrial structures

Bubbles hold clue to improved industrial structures
Credit: ACS

Insights into how minute, yet powerful, bubbles form and collapse on underwater surfaces could help make industrial structures such as ship propellers more hardwearing, research suggests.

Supercomputer calculations have revealed details of the growth of so-called nanobubbles, which are tens of thousands of times smaller than a pin head.

The findings could lend valuable insight into damage caused on industrial structures, such as pump components, when these bubbles burst to release tiny but powerful jets of liquid.

This rapid expansion and collapse of bubbles, known as cavitation, is a common problem in engineering but is not well understood.

Engineers at the University of Edinburgh devised complex simulations of air bubbles in water, using the UK's national supercomputer.

The team modelled the motion of atoms in the and observed how they grew in response to small drops in .

They were able to determine the critical pressure needed for bubble growth to become unstable, and found that this was much lower than suggested by theory.

Their findings could inform the development of nanotechnologies to harness the power of thousands of jets from collapsing nanobubbles, such as therapies to target some cancers, or for cleaning high-precision technical equipment. Researchers have proposed an updated theory on the stability of surface , based on their findings.

Their study, published in Langmuir, was supported by the Engineering and Physical Sciences Research Council.

Duncan Dockar, of the University of Edinburgh's School of Engineering, said: "Bubbles routinely form and burst on surfaces that move through fluids and the resulting wear can cause drag and critical damage. We hope our insights, made possible with complex computing, can help limit the impact on machine performance and enable future technologies."


Explore further

Scientists create predictive model for hydrogen-nanovoid interaction in metals

More information: Duncan Dockar et al, Mechanical Stability of Surface Nanobubbles, Langmuir (2018). DOI: 10.1021/acs.langmuir.8b02887
Journal information: Langmuir

Citation: Bubbles hold clue to improved industrial structures (2019, July 31) retrieved 23 August 2019 from https://phys.org/news/2019-07-clue-industrial.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
62 shares

Feedback to editors

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more