New research area: How protein structures change due to normal forces

March 1, 2019, Biophysical Society
The structure of myomesin with elastic regions shown in red. Credit: Matthias Wilmanns

Proteins made in our cells are folded into specific shapes so they can fulfill their functions. Scientists have discovered the static structures of over 100,000 proteins, but how they change in response to forces on the cell, like muscle contractions, is largely unknown. Matthias Wilmanns and colleagues at the European Molecular Biology Laboratory in Hamburg, Germany, developed methods to study the structure of a protein "strain absorber" as it changes during muscle contractions. They will present their work at the 63rd Biophysical Society Annual Meeting, to be held March 2—6, 2019 in Baltimore, Maryland.

Each muscle unit has a series of highly organized protein rods that are pulled to overlap when a muscle contracts or are pulled apart when a muscle is stretched. Myomesin is a protein that stabilizes and organizes these rods, acting to absorb the strain on stretched muscles to prevent the muscle units from breaking apart. Wilmanns, in collaboration with Matthias Rief's group at the Technical University of Munich, used to stretch and measure individual myomesin molecules. Myomesin became 2.5 times longer under force, and their high resolution structure showed this was due to slinky-like linkers in the that allow it to stretch without unfolding. However, a key question remains on demonstrating that these mechanisms apply under physiological conditions as well. To address this question, Wilmanns and colleagues are now designing experiments to visualize the changes in myomesin inside cells using super imaging.

"Muscle is a good model for looking at how its proteins respond to force, because it experiences extraordinarily high forces, but we have small forces all over the body," explained Wilmanns. "Now we have methods sensitive enough to measure very small forces, so we can start looking at the behavior of different proteins that respond to very small forces. At present there is so little known about mechanisms of molecular elasticity in proteins."

Explore further: Let's stretch... Scientists study myomesin protein

Related Stories

Let's stretch... Scientists study myomesin protein

February 14, 2012

The proteins actin, myosin and titin are big players in the business of muscle contraction. Scientists at the European Molecular Biology Laboratory (EMBL) in Hamburg, Germany, have now examined another muscle protein – ...

Optical tweezers unveil a secret of muscle power

January 24, 2017

Our hearts beat a life long. With every beat our heart muscle contracts and expands. How this can work throughout an entire life remains largely a mystery. Researchers at the Technical University of Munich (TUM) have now ...

Muscular protein bond -- strongest yet found in nature

July 20, 2009

A research collaboration between Munich-based biophysicists and a structural biologist in Hamburg (Germany) is helping to explain why our muscles, and those of other animals, don't simply fall apart under stress. Their findings ...

How non-muscle cells find the strength to move

March 29, 2017

Researchers from the Mechanobiology Institute, Singapore (MBI) at the National University of Singapore have described, for the first time, the ordered arrangement of myosin-II filaments in actin cables of non-muscle cells. ...

Recommended for you

Scientists solve mystery shrouding oldest animal fossils

March 25, 2019

Scientists from The Australian National University (ANU) have discovered that 558 million-year-old Dickinsonia fossils do not reveal all of the features of the earliest known animals, which potentially had mouths and guts.

Earth's deep mantle flows dynamically

March 25, 2019

As ancient ocean floors plunge over 1,000 km into the Earth's deep interior, they cause hot rock in the lower mantle to flow much more dynamically than previously thought, finds a new UCL-led study.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.