'Unclonable' tag combats counterfeiters

February 6, 2019, American Chemical Society
'Unclonable' tag combats counterfeiters
Credit: American Chemical Society

Discovering that your new designer handbag or gold watch is a fake is costly and annoying, and counterfeit medical devices or drugs could have even more serious consequences. But seemingly as soon as manufacturers develop a new method to ensure product authenticity, counterfeiters find a way to outsmart it. Now, researchers have created an "unclonable" tag that can never be replicated, even by the manufacturer. They report their results in ACS Applied Materials & Interfaces.

Each year, counterfeit goods cost billions of dollars in economic losses. These knock-offs, typically of inferior quality, often masquerade as luxury brands. Manufacturers have tried to incorporate unique tags or bar codes on their products so that store owners and consumers can verify a product's authenticity, but counterfeiters often figure out how to copy these. Riikka Arppe-Tabbara, Mohammad Tabbara and Thomas Just Sørensen wanted to develop an using physical unclonable functions (PUFs)—tags based on random processes that are impossible to replicate. As they explain in their report, an example of a PUF would be throwing a handful of sand on a surface. Each throw generates a random pattern that cannot be copied.

To develop their anti-counterfeiting system, the researchers laser-printed QR codes on paper and then sprayed the PUF pattern on the surface. The PUF inks contained microparticles, which formed random patterns that showed up as white spots on a black background when magnified. To validate their system, the team generated 10,000 tags and imaged them with a smart phone camera to establish a registry. Then, they re-imaged the tags with different smart phone readers and tried to match them to the registry. The system correctly identified 76 percent of the PUF tags. None of the tags were identified incorrectly, but some codes that were dirty or out-of-focus required an additional scan. The researchers estimate that the system can generate 2.5 × 10120 unique codes.

Explore further: New marking technique could halt counterfeit goods

More information: Riikka Arppe-Tabbara et al. Versatile and Validated Optical Authentication System Based on Physical Unclonable Functions, ACS Applied Materials & Interfaces (2019). DOI: 10.1021/acsami.8b17403

Related Stories

New marking technique could halt counterfeit goods

January 26, 2018

Researchers at the University of Copenhagen have developed the world's most secure marking system for combating pirated goods, including pirated pharmaceuticals, food, designer merchandise and artwork. The system could be ...

Anti-counterfeit polymers work like fingerprints

February 16, 2015

(Phys.org)—When it comes to tagging items to prove their authenticity, the goal is to stay ahead of counterfeit technology. The best tags are unique, complex, easy to read, and difficult to reproduce. One naturally-occurring ...

Recommended for you

When a defect might be beneficial

February 19, 2019

In the quest to design more efficient solar cells and light-emitting diodes (LEDs), a team of engineers has analyzed different types of defects in the semiconductor material that enables such devices to determine if and how ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.