Anti-counterfeit polymers work like fingerprints

February 16, 2015 by Heather Zeiger report
Anti-counterfeit polymers work like fingerprints
Credit: Wiley

(Phys.org)—When it comes to tagging items to prove their authenticity, the goal is to stay ahead of counterfeit technology. The best tags are unique, complex, easy to read, and difficult to reproduce. One naturally-occurring authentication "tag" is fingerprints, which are difficult to replicate, but are easy to read. Wook Park and Sunghoon Kwon from Seoul National University developed a process for making anti-counterfeit tags from wrinkled silica polymers that is based on the way fingerprints are used for identification. Their work is published in Advanced Materials.

The best tags use non-deterministic coding, meaning that even if you do the exact same process to make the anti-counterfeit tag as you did for another tag, the two tags will still be different from each other. This makes them desirable for anti-counterfeit. However, there is a cost to using these tags. Non-deterministic tags have a higher degree of randomness but their complexity, or , and their decoding strategy are difficult to tailor for various products. This makes many of these types of anti-counterfeit tags inefficient for industrial use.

Park and Kwon used the way fingerprints produce unique patterns to design an unclonable and configurable anti-counterfeit tag. Their process involved coating substrates, such as nanoparticles, with silica polymers and subsequently drying the polymer-coated substrate to allow the substrate to shrink, causing to polymer to wrinkle.

To test whether their polymer tags were functionally similar to fingerprints, they subjected their polymers to similar techniques used to read fingerprints. In these techniques fingerprint patterns, called minutiae, are studied to identify unique minutia points. Using the fingerprint algorithm, this technique successfully identified minutia points on the silica polymer proving that a known, and ubiquitous technique, can be used to identify security tags. Furthermore, they found that, compared to synthetic human fingerprints, the polymer tags contained more randomized minutia patterns, meaning individual tags were more unique than individual fingerprints.

While the wrinkling pattern was not reproducible, even using the same conditions and substrate, Park and Kwon were able to control minutiae density. By varying the reaction time for the coating process or wavelength of UV used for the photopolymerization step they were able to control the wavelength of the minutiae pattern. Wavelength increased proportionally as coating time increased or as the energetic strength of UV light decreased.

The greater the complexity of the wrinkle pattern, the higher the security of the tag. Complexity is proportional to density of minutiae per unit length, and density is inversely proportional to wavelength. Therefore, by changing the reaction time or UV strength, the polymer wrinkle wavelength can be tuned for a desired security level. Park and Kwon point out in their paper that "To our knowledge, the presented fingerprinting approach is the first, among nondeterministic codes, to enable tuning of coding capacity or security level."

Lastly, Park and Kwon tested their polymer tag on various objects and under varying conditions. They found that their tag remained intact under high temperatures, sonication, and repetitive swelling and shrinking.

Overall, the wrinkle pattern of silica polymers overlaid on a substrate produced a security tag that can be used to ensure the authenticity of various products. The tag has a tunable security level by adjusting the density of minutia in the wrinkle pattern, and the tags are easy to read using the same technology used for fingerprint analysis.

Explore further: Anti-counterfeit 'fingerprints' made from silver nanowires

More information: "Biomimetic microfingerprints for anti-counterfeiting strategies" Hyang Jong Bea, Sangwook Bea, Cheolheon Park, Sangkwon Han, Junhoi Kim, Lily Nari Kim, Kibeom Kim, Suk-Heung Song, Wook Park, and Sunghoon Kwon, Advanced Materials, 2015 DOI: 10.1002/adma.201405483

Abstract
An unclonable, fingerprint-mimicking anti-counterfeiting strategy is presented that encrypts polymeric particles with randomly generated silica film wrinkles. The generated wrinkle codes are as highly unique as human fingerprints and are technically irreproducible. Superior to previous physical unclonable functions, codes are tunable on demand and generable on various geometries. Reliable authentication of real-world products that have these microfingerprints is demonstrated using optical decoding methods.

Related Stories

New self-stretching material developed

February 13, 2015

Although most materials slightly expand when heated, there is a new class of rubber-like material that not only self-stretches upon cooling; it reverts back to its original shape when heated, all without physical manipulation.

Recommended for you

Black phosphorus holds promise for the future of electronics

April 20, 2017

Discovered more than 100 years ago, black phosphorus was soon forgotten when there was no apparent use for it. In what may prove to be one of the great comeback stories of electrical engineering, it now stands to play a crucial ...

Uncovering a novel mechanism in cell division

April 19, 2017

Northwestern Medicine scientists have revealed the role amino-terminal methylation plays in a specific protein in the centromere, a region of the chromosome important in cell division, and how the dysregulation of this protein ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.