Learning transistor mimics the brain

February 5, 2019, Linköping University
Simone Fabiano and Jennifer Gerasimov have developed a learning transistor that mimics the way synapses function. Credit: Thor Balkhed

A new transistor based on organic materials has been developed by scientists at Linköping University. It has the ability to learn, and is equipped with both short-term and long-term memory. The work is a major step on the way to creating technology that mimics the human brain.

Until now, brains have been unique in being able to create connections where there were none before. In a scientific article in Advanced Science, researchers from Linköping University describe a transistor that can create a new connection between an input and an output. They have incorporated the transistor into an that learns how to link a certain stimulus with an output signal, in the same way that a dog learns that the sound of a food bowl being prepared means that dinner is on the way.

A normal transistor acts as a valve that amplifies or dampens the output signal, depending on the characteristics of the input signal. In the organic electrochemical transistor that the researchers have developed, the channel in the transistor consists of an electropolymerised conducting polymer. The channel can be formed, grown or shrunk, or completely eliminated during operation. It can also be trained to react to a certain stimulus, a certain input signal, such that the transistor channel becomes more conductive and the larger.

"It is the first time that real time formation of new electronic components is shown in neuromorphic devices", says Simone Fabiano, principal investigator in organic nanoelectronics at the Laboratory of Organic Electronics, Campus Norrköping.

The channel is grown by increasing the degree of polymerisation of the material in the transistor channel, thereby increasing the number of polymer chains that conduct the signal. Alternatively, the material may be overoxidised (by applying a high voltage) and the channel becomes inactive. Temporary changes of the conductivity can also be achieved by doping or dedoping the material.

"We have shown that we can induce both short-term and permanent changes to how the transistor processes information, which is vital if one wants to mimic the ways that brain cells communicate with each other", says Jennifer Gerasimov, postdoc in organic nanoelectronics and one of the authors of the article.

By changing the input signal, the strength of the transistor response can be modulated across a wide range, and connections can be created where none previously existed. This gives the transistor a behaviour that is comparable with that of the synapse, or the communication interface between two brain cells.

It is also a major step towards machine learning using organic electronics. Software-based are currently used in machine learning to achieve what is known as "deep learning". Software requires that the signals are transmitted between a huge number of nodes to simulate a single synapse, which takes considerable computing power and thus consumes considerable energy.

"We have developed hardware that does the same thing, using a single electronic component", says Jennifer Gerasimov.

"Our organic electrochemical transistor can therefore carry out the work of thousands of normal with an energy consumption that approaches the energy consumed when a transmits signals between two cells", confirms Simone Fabiano.

The transistor channel has not been constructed using the most common polymer used in organic electronics, PEDOT, but instead using a polymer of a newly-developed monomer, ETE-S, produced by Roger Gabrielsson, who also works at the Laboratory of Organic Electronics and is one of the authors of the article. ETE-S has several that make it perfectly suited for this application - it forms sufficiently long polymer chains, is water-soluble while the polymer form is not, and it produces polymers with an intermediate level of doping. The PETE-S is produced in its doped form with an intrinsic negative charge to balance the positive charge carriers (it is p-doped).

Explore further: The world's first heat-driven transistor

More information: Jennifer Y. Gerasimov et al. An Evolvable Organic Electrochemical Transistor for Neuromorphic Applications, Advanced Science (2019). DOI: 10.1002/advs.201801339

Related Stories

The world's first heat-driven transistor

January 31, 2017

Dan Zhao and Simone Fabiano at the Laboratory of Organic Electronics, Linköping University, have created a thermoelectric organic transistor. A temperature rise of a single degree is sufficient to cause a detectable current ...

New light shed on intensely studied material

January 18, 2019

The organic polymer PEDOT is one of the world's most intensely studied materials. Despite this, researchers at Linköping University have now demonstrated that the material functions in a completely different manner than ...

A major step forward in organic electronics

January 12, 2018

Researchers at the Laboratory of Organic Electronics, Linköping University, have developed the world's first complementary electrochemical logic circuits that can function stably for long periods in water. This is a highly ...

New transistor concept, solar cell included

March 6, 2018

ICN2 researchers have developed a novel concept in transistor technology: a two-in-one power source plus transistor device that runs on solar energy. Published in Advanced Functional Materials, lead author Amador Pérez-Tomás ...

Recommended for you

Light-based production of drug-discovery molecules

February 18, 2019

Photoelectrochemical (PEC) cells are widely studied for the conversion of solar energy into chemical fuels. They use photocathodes and photoanodes to "split" water into hydrogen and oxygen respectively. PEC cells can work ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

dirk_bruere
not rated yet Feb 06, 2019
The only problems being stability, and depth of the memory effect?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.